Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a hình như sai đề mk sửa nha
a)\(A=\left(2x+\frac{1}{3}\right)^4-1\)
Vì \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Suy ra:\(\left(2x+\frac{1}{3}\right)^4-1\ge-1\)
Dấu = xảy ra khi \(2x+\frac{1}{3}=0\)
\(2x=-\frac{1}{3}\)
\(x=-\frac{1}{6}\)
Vậy Min A=-1 khi \(x=-\frac{1}{6}\)
b)\(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
\(B=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\)
Vì \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\)
Suy ra:\(3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le3\)
Dấu = xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\)
\(\frac{4}{9}x=\frac{2}{15}\)
\(x=\frac{3}{10}\)
Vậy Max B=3 khi \(x=\frac{3}{10}\)
a)\(\left|x+\frac{1}{5}\right|-4=-2\)
\(\Rightarrow\left|x+\frac{1}{5}\right|=2\)
\(\Rightarrow x+\frac{1}{5}=2\) hoặc \(-2\)
Xét \(x+\frac{1}{5}=2\Leftrightarrow x=\frac{9}{5}\)
Xét \(x+\frac{1}{5}=-2\Leftrightarrow x=-\frac{11}{5}\)
e)
=> (x-2) . (x+7) = ( x-1 ) . ( x +4)
=> x2 +7x - 2x -14 = x2 - x + 4x - 4
x2 + 5x - 14 = x2 + 3x - 4
=> 5x - 14 = 3x - 4
=> 5x - 3x = 14-4
=> 2x = 10 => x = 10 : 2 => x = 5
c)
=>( x-1) . 7 = ( x + 5 ) . 6
=> 7x - 7 = 6x + 30
=> 7x - 6x= 30 + 7
=> x = 37
a,x=\(\frac{5}{2}\)
b,x=\(\frac{13}{176}\)
c,x=37
d, x=\(\frac{12}{5}\)
e, x=5
\(a.\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x-1\right).\left(2x+1\right)}=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x-1\right).\left(2x+1\right)}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x-1}-\frac{1}{2x+1}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{2x+1}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2x+1}=\frac{49}{99}\)
\(\Rightarrow99x=49.\left(2x+1\right)\)
\(\Rightarrow99x=98x+49\)
\(\Rightarrow x=49\)
Vậy : \(x=49\)
\(b.\)
\(1-3+3^2-3^3+...+\left(-3^x\right)=\frac{1-9^{1006}}{4}\)
Đặt \(A=1-3+3^2-3^3+...+\left(-3^x\right)\)
\(\Rightarrow3A=3-3^2+3^3-3^4+...+\left(-3^{x+1}\right)\)
\(\Rightarrow3A+A=1+\left(-3^{x+1}\right)\)
\(\Rightarrow4A=1+\left(-3^{x+1}\right)\)
\(\Rightarrow A=\frac{1+\left(-3^{x+1}\right)}{4}\)
\(\Rightarrow\frac{1+\left(-3^{x+1}\right)}{4}=\frac{1-9^{1006}}{4}\)
\(\Rightarrow-3^{x+1}=-9^{1006}\)
\(\Rightarrow-3^{x+1}=-3^{2012}\)
\(\Rightarrow x+1=2012\)
\(\Rightarrow x=2012-1\)
\(\Rightarrow x=2011\)
Vậy : \(x=2011\)
Bài 1:
a)
\((\frac{3}{5})^2-[\frac{1}{3}:3-\sqrt{16}.(\frac{1}{2})^2]-(10.12-2014)^0\)
\(=\frac{9}{25}-(\frac{1}{9}-1)-1\)
\(=\frac{9}{25}-\frac{1}{9}=\frac{56}{225}\)
b)
\(|-\frac{100}{123}|:(\frac{3}{4}+\frac{7}{12})+\frac{23}{123}:(\frac{9}{5}-\frac{7}{15})\)
\(=\frac{100}{123}:\frac{4}{3}+\frac{23}{123}:\frac{4}{3}=(\frac{100}{123}+\frac{23}{123}):\frac{4}{3}=1:\frac{4}{3}=\frac{3}{4}\)
c)
\(\frac{(-5)^{32}.20^{43}}{(-8)^{29}.125^{25}}=\frac{5^{32}.(2^2.5)^{43}}{(-2)^{3.29}.(5^3)^{25}}=\frac{5^{32}.2^{86}.5^{43}}{-2^{87}.5^{75}}\)
\(=\frac{5^{32+43}.2^{86}}{-2^{87}.5^{75}}=\frac{5^{75}.2^{86}}{-2^{87}.5^{75}}=-\frac{1}{2}\)
Bài 2:
a)
\(\frac{2}{3}-(\frac{3}{4}-x)=\sqrt{\frac{1}{9}}=\frac{1}{3}\)
\(\frac{3}{4}-x=\frac{2}{3}-\frac{1}{3}=\frac{1}{3}\)
\(x=\frac{3}{4}-\frac{1}{3}=\frac{5}{12}\)
b)
\((\frac{1}{2}-x)^2=(-2)^2=2^2\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}-x=-2\\ \frac{1}{2}-x=2\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{5}{2}\\ x=\frac{-3}{2}\end{matrix}\right.\)
c)
\(|3x+\frac{1}{2}|-\frac{2}{3}=1\)
\(|3x+\frac{1}{2}|=\frac{2}{3}+1=\frac{5}{3}\)
\(\Rightarrow \left[\begin{matrix} 3x+\frac{1}{2}=\frac{5}{3}\\ 3x+\frac{1}{2}=-\frac{5}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{7}{18}\\ x=\frac{-13}{18}\end{matrix}\right.\)
d)
\(3^{2x+1}=81=3^4\)
\(\Rightarrow 2x+1=4\Rightarrow x=\frac{3}{2}\)
Bài 1:
\(a,A=\frac{-25}{28}.0,21=\frac{-25}{28}.\frac{21}{100}=\frac{-25.21}{28.100}=\frac{-1.25.3.7}{4.7.25.4}=\frac{-1.3}{4.4}=\frac{-3}{16}\)
\(b,B=\left(\frac{13}{24}-\frac{29}{30}\right):\left(-10,2\right)=\left(\frac{65}{120}-\frac{116}{120}\right):\frac{-51}{5}=\frac{-51}{120}.\frac{5}{-51}=\frac{-51.5}{120.\left(-51\right)}=\frac{-51.5}{5.24.\left(-51\right)}=\frac{1}{24}\)
Cái này mk làm rồi
Ừm