K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 12 2021

Lời giải:

Gọi độ dài cạnh hình vuông là $x$ (m)

Để chia đám đất hcn kia thành các hình vuông bằng nhau thì:

$52\vdots x, 36\vdots x$ hay $x$ là ƯC$(36,52)$

Để $x$ lớn nhất thì $x=ƯCLN(36,52)$

Ta thấy:

$36=2^2.3^2$

$52=2^2.13$

$\Rightarrow x=ƯCLN(36,52)=2^2=4$ (m)

Vậy cạnh hình vuông lớn nhất là $4$ (m)

28 tháng 8 2015

Gọi x là cạch hình vuông lớn nhất 
Theo đề ta có:
Để thỏa mãn đề bài:
52:x; 36:x   với x là số lớn nhất (1)
=>x là ước chung lớn nhất của 52;36
52=2^2.13
36=2^2.3^3
=>ƯCLN (52;36)=2^2=4
Vậy với cách chia có độ dài là 4m là số lớn nhất 

 

31 tháng 12 2021

Gọi x là cạnh hình vuông lớn nhất .

Theo đề bài ta có : Để thõa mãn đề bài : 52 : x ; 36 : x   ( x là số lớn nhất )   ( 1 )

=> x là ƯCLN ( 52 ; 36 ) 52 = 22 x 13

36 = 22 x 32 ƯCLN ( 52 ; 36 ) = 22 = 4

Vậy với cách chia có độ dài là 4m là lớn nhất 

31 tháng 12 2021

Gọi x là cạch hình vuông lớn nhất 

Theo đề ta có:

Để thỏa mãn đề bài:

52: x ; 36: x   với x là số lớn nhất (1)

=>x là ước chung lớn nhất của 52;36

52=2^2.13

36=2^2.3^3

=>ƯCLN (52;36)=2^2=4

Vậy với cách chia có độ dài là 4m là số lớn nhất 

Click vào trong câu hỏi tương tự nha bạn !

3 tháng 11 2018

Gọi x là cạnh hình vuông lớn nhất .

Theo đề bài ta có : Để thõa mãn đề bài : 52 : x ; 36 : x   ( x là số lớn nhất )   ( 1 )

=> x là ƯCLN ( 52 ; 36 ) 52 = 22 x 13

36 = 22 x 32 ƯCLN ( 52 ; 36 ) = 22 = 4

Vậy với cách chia có độ dài là 4m là lớn nhất 

20 tháng 12 2020

Gọi a là cạnh hình vuông lớn nhất 

=> a là ƯCLN(52,36)

Ta có :

52=2^2.13

36=2^2.3^2

=> ƯCLN(52,36)=2^2=4

Vậy độ dài lớn nhất của cạnh hình vuông là 4m

20 tháng 12 2020

Gọi cạnh hình vuông lớn nhất là a 

Theo bài ra ta có :

52 chia hết cho a ; 36 chia hết cho a ; a là số lớn nhất 

\(\Rightarrow\) a \(\in\) ƯCLN(52;36)

52 = 22 .13

36 = 22.32 

=> ƯCLN(52;36) = 22 =4 

Vậy cạnh hình vuông lớn nhất là 4m

9 tháng 8 2019

             Gọi x là hình vuông lớn nhất . 

Theo đề bài ta có :

52 : x ; 36 : x  (x là số lớn nhất )

\(\Rightarrow x\inƯCLN\left(52;36\right)\)

\(ƯCLN\left(52;36\right)=2^2=4\)

Vậy với cách chia có độ dài là 4 m là lớn nhất 

          Chúc bạn  học tốt  !!!

15 tháng 12 2019

Bài giải

Gọi x là độ dài lớn nhất của cạnh hình (x \(\in\)N*)

Theo đề bài, có: 52 \(⋮\)x   ;   36 \(⋮\)x       và x lớn nhất

Suy ra x \(\in\)ƯCLN (52; 36)

52 = 22.13

36 = 22.32

ƯCLN (52; 36) = 22 = 4

Suy ra x = 4 (m)

Vậy độ dài lớn nhất của cạnh hình vuông là 4 m

Với cách chia là mỗi hình vuông có cạnh 4 m

AH
Akai Haruma
Giáo viên
25 tháng 6 2024

Lời giải:
Để hình vuông là lớn nhất thì độ dài cạnh hình vuông là $ƯCLN(62,36)$

$\Rightarrow$ độ dài cạnh hình vuông là $2$ (m)

Vậy chia lô đất ra thành các hình vuông có độ dài cạnh $2$ m