K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2023

\(\dfrac{1}{1.2.3}\) + \(\dfrac{1}{2.3.4}\) + .....+ \(\dfrac{1}{10.11.12}\)

\(\dfrac{1}{1.2}\) - \(\dfrac{1}{2.3}\) + \(\dfrac{1}{2.3}\) - \(\dfrac{1}{3.4}\) +....+ \(\dfrac{1}{10.11}\) - \(\dfrac{1}{11.12}\)

=\(\dfrac{1}{1.2}\) + (- \(\dfrac{1}{2.3}\) + \(\dfrac{1}{2.3}\))+.......+ ( \(-\dfrac{1}{10.11}\) + \(\dfrac{1}{10.11}\)) - \(\dfrac{1}{11.12}\)

=\(\dfrac{1}{2}\) - \(\dfrac{1}{11.12}\) =\(\dfrac{1}{2}\) - \(\dfrac{1}{132}\) =\(\dfrac{66}{132}\)-\(\dfrac{1}{132}\) =\(\dfrac{65}{132}\) Vì \(\dfrac{33}{132}\) = \(\dfrac{1}{4}\) nên \(\dfrac{65}{132}\) > \(\dfrac{1}{4}\)
9 tháng 4 2023

Ta có:

\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+....+\dfrac{1}{10.11}-\dfrac{1}{11.12}=\dfrac{1}{1.2}-\dfrac{1}{11.12}=\dfrac{1}{2}-\dfrac{1}{132}=\dfrac{65}{132}\)Mà \(\dfrac{65}{132}\ne\dfrac{1}{4}\Rightarrow\) Có thể bạn ghi sai đề thì phải !

9 tháng 4 2023

ừm dấu = thành dấu < nha, sorry

29 tháng 3 2017

\(A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{899}{900}\)

\(A=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\)

\(A=\dfrac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot31}{\left(2\cdot3\cdot4\cdot...\cdot30\right)^2}\)

\(A=\dfrac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot31}{\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot30}\)

\(A=\dfrac{1\cdot31}{30}=\dfrac{31}{30}\)

29 tháng 3 2017

Ta có : \(\dfrac{1}{101}>\dfrac{1}{300}\)

...

\(\dfrac{1}{299}>\dfrac{1}{300}\)

Do đó :

\(\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{300}>\dfrac{1}{300}+\dfrac{1}{300}..+\dfrac{1}{300}\)

\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{300}>\dfrac{200}{300}=\dfrac{2}{3}\)

Vậy...

14 tháng 4 2017

\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{10.11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{132}\right)\)

\(=\dfrac{1}{2}.\dfrac{65}{132}\)

\(=\dfrac{65}{264}\)

Vậy...

12 tháng 5 2017

* Chứng tỏ

Ta có :\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)

= \(\dfrac{1}{1.2.3}.\dfrac{2}{2}+\dfrac{1}{2.3.4}.\dfrac{2}{2}+...+\dfrac{1}{98.99.100}.\dfrac{2}{2}\)

= \(\dfrac{1}{2}.\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{98.99.100}\right)\)

= \(\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)

= \(\dfrac{1}{2}.\left(\dfrac{1}{1.2}+0+0+...+0+\dfrac{-1}{99.100}\right)\)

= \(\dfrac{1}{2}.\left(\dfrac{1}{2}+\dfrac{-1}{9900}\right)\)

= \(\dfrac{1}{2}.\left(\dfrac{4850}{9900}+\dfrac{-1}{9900}\right)\)

= \(\dfrac{1}{2}.\dfrac{4849}{9900}\)

= \(\dfrac{4849}{19800}\)

12 tháng 5 2017

* So sánh

\(\dfrac{4950}{19800}\)\(\dfrac{1}{4}\)

\(\dfrac{1}{4}=\dfrac{4950}{19800}\)

\(\dfrac{4950}{19800}=\dfrac{4950}{19800}\)

=> Tổng trên bằng với\(\dfrac{1}{4}\)

20 tháng 3 2018

Ta có :

\(\dfrac{1}{1.2}-\dfrac{1}{2.3}=\dfrac{3}{1.2.3}-\dfrac{1}{1.2.3}=\dfrac{2}{1.2.3}\)

\(\dfrac{1}{2.3}-\dfrac{1}{3.4}=\dfrac{4}{2.3.4}-\dfrac{2}{2.3.4}=\dfrac{2}{2.3.4}\)

...

Do đó :

\(\dfrac{1}{1.2.3}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)\)

\(\dfrac{1}{2.3.4}=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)\)

Vậy :

\(M=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{132}\right)\)

\(=\dfrac{1}{2}.\dfrac{65}{132}=\dfrac{65}{264}\)

1 tháng 9 2017

A= \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{4.5.6}+....+\dfrac{1}{37.38.39}\)

A=\(\dfrac{1}{1}-\dfrac{1}{39}\)

A=\(\dfrac{38}{39}\)

còn lại tự làm do mình có việc chút

31 tháng 8 2017

Chưa học

10 tháng 5 2017

hôm qua cô giảng cho mình bài này không cần tính đâu

Gọi tổng là A

A=\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{17.18.19}\)

2A=\(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{17.18.19}\)

2A=\(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{17.18}-\dfrac{1}{18.19}\)

2A=\(\dfrac{1}{2}-\dfrac{1}{18.19}\)

A=\(\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{18.19}\right)\)

A=\(\dfrac{1}{2}.\dfrac{18.19-2}{2.18.19}\) < \(\dfrac{1}{4}\)

A=\(\dfrac{18.19-2}{2.2.18.19}\) < \(\dfrac{18.19}{2.2.18.19}\)

\(\Rightarrow\) A<\(\dfrac{1}{4}\)

9 tháng 5 2017

\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{17.18.19}\)<\(\dfrac{1}{4}\)

Đặt A=\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{17.18.19}\)

2.A=2.(\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{17.18.19}\))

2. A=\(\dfrac{2}{1.2.3}\)+\(\dfrac{2}{2.3.4}\)+\(\dfrac{2}{3.4.5}\)+...+\(\dfrac{2}{17.18.19}\)

2.A=\(\dfrac{1}{1.2}\)-\(\dfrac{1}{2.3}\)+\(\dfrac{1}{2.3}\)-\(\dfrac{1}{3.4}\)+ ...+\(\dfrac{1}{17.18}\)-\(\dfrac{1}{18.19}\)

2.A=\(\dfrac{1}{1.2}\)-\(\dfrac{1}{18.19}\)=\(\dfrac{85}{171}\)

A=\(\dfrac{85}{171}\):2=\(\dfrac{85}{342}\)

Ta cũng có: \(\dfrac{1}{4}\) = \(\dfrac{171}{684}\); \(\dfrac{85}{342}\) = \(\dfrac{170}{684}\)

Vì 170 < 171 ( \(\dfrac{170}{684}\) < \(\dfrac{171}{684}\) )

Vậy \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{17.18.19}\) < \(\dfrac{1}{4}\)

\(\dfrac{1}{2}\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{18.19}+\dfrac{1}{19.20}\right)\) Gio thi tu ma lam ko thích viết nữa mệt

23 tháng 3 2017

bn ơi mk nghĩ bn nên tôn trọng mk một chút! Nếu bn giúp đc thì mk cảm ơn rất nhiều. Còn bn không làm đc thì để cho người khác làm! bn ko thích làm thì mk cx ko mong bn giải nửa chừng như vậy, mk vừa ko hiểu j mà còn bị tự ái khi bn nói như vậy, mong bn hiểu!!mk góp ý thật lòng, ko chỉ đối với mk mà với những bn khác cx zậy!!

24 tháng 3 2017

a, A= 1/2. (2/1.2.3+2/2.3.4+2/3.4.5+...+2/18.19.20) A=1/2. (1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+...+1/18.19-1/19.20) A=1/2. (1/1.2-1/19.20) A=1/2. 189/380 A= 189/760