K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi d=ƯCLN(2n+3;4n+7)

=>\(\left\{{}\begin{matrix}2n+3⋮d\\4n+7⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4n+6⋮d\\4n+7⋮d\end{matrix}\right.\)

=>\(4n+6-4n-7⋮d\)

=>\(-1⋮d\)

=>d=1

=>ƯCLN(2n+3;4n+7)=1

=>\(\dfrac{2n+3}{4n+7}\) là phân số tối giản

DD
14 tháng 5 2021

Đặt \(d=\left(n+1,3n+2\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow3\left(n+1\right)-\left(3n+2\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

DD
14 tháng 5 2021

Đặt \(d=\left(2n+1,4n+3\right)\).

Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

25 tháng 11 2023

Gọi d=ƯCLN(2n+3;4n+8)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\2n+3⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow4n+8-4n-6⋮d\)

=>\(2⋮d\)

mà 2n+3 lẻ

nên d=1

=>ƯCLN(2n+3;4n+8)=1

=>\(P=\dfrac{2n+3}{4n+8}\) là phân số tối giản với mọi n<>-2

27 tháng 4 2020

Gọi d là ƯCLN (2n+3; 4n+7) (d thuộc N)

=> \(\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}}\)

=> (4n+7)-(4n+6) chia hết cho d

=> 4n+7-4n-6 chia hết cho d

=> 1 chia hết cho d. Mà d thuộc N 

=> d=1 => ƯCLN (2n+3; 4n+7)=1

=> \(\frac{2n+3}{4n+7}\)tối giản với n thuộc Z

27 tháng 4 2020

Gọi d là ƯC(2n + 3 ; 4n + 7)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4\left(2n+3\right)⋮d\\2\left(4n+7\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}8n+12⋮d\\8n+14⋮d\end{cases}}}\)

=> ( 8n + 12 ) - ( 8n + 14 ) chia hết cho d

=> 2 chia hết cho d

* d = 1 => 2n + 3 chia hết cho 1

* d = 2 => 2n + 3 không chia hết cho 2 vì 3 không chia hết cho 2

=> d = 1

=> ƯCLN(2n + 3; 4n + 7) = 1

=> \(\frac{2n+3}{4n+7}\)tối giản ( đpcm )

9 tháng 3 2017

e gio biet lam chua ha cu

ki ten 

thuc

dinh trong thuc

12 tháng 4 2023

Vvvv

 

22 tháng 3 2021

đặt:ƯCLN của 2n + 3/3n +4 là d (d thuộc(nên viết kí hiệu) Z

suy ra (2n+3)chia hết cho (kí hiệu) d

           (3n+4)chia hết cho d

suy ra 3.(2n + 3)chia hết cho d

           2.(3n +4)chia hết cho d

suy ra 3.2n+3.3chia hết cho d

           2.3n+2.4chia hết cho d

suy ra 6n+9 chia hết cho d

          6n +8 chia hết cho d

suy ra (6n+9)-(6n+8)chia hết cho d

suy ra 1chia hết cho d

 suy ra d =1

vậy 2n+3/3n+4

22 tháng 3 2021

chu mi la , mai mik ik hok ùi ,chu mi la

23 tháng 2 2016

Gọi UCLN(2n + 3; 4n + 5) là d (d thuộc N*)

=> 2n + 3 chia hết cho d => 4n + 6 chia hết cho d => 4n + 5 + 1 chia hết cho d

và 4n + 5 chia hết cho d

=> 1 chia hết cho d

=> d = 1 (Vì d thuộc N*)

=> UWCLN(2n + 3; 4n + 5) = 1

=> 2n + 3/4n + 5 là phân số tối giản với mọi số tự nhiên n

Vậy,........

8 tháng 3 2018

Gọi d là USC của (n+1; 2n+3)

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\) <=> \(\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\)<=> \(\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

<=> [(2n+3)-(2n+2)]\(⋮\)d <=> 1\(⋮\)d => d=1

Vậy USCLN của (n+1; 2n+3) là 1 => số có dạng \(\frac{n+1}{2n+3}\)là phân số tối giản