Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này chị làm đc rồi
chị đăng cho Hiếu làm thôi
ko làm đc thì bảo chị nhé
Hình đẹp lắm lè
A H B C D E O K I
kẻ DO _|_ AH tại O
EI _|_ AH tại I
có góc OAD + góc BAD + góc BAH = 180
góc BAD = 90 do AD _|_ AB (gt)
=> góc OAD + góc BAH = 90 (1)
DO _|_ AH (Cách vẽ) => góc DOA = 90
=> góc ODA + góc DAO = 90 (2)
(1)(2) => góc ODA = góc BAH
xét tam giác ODA và tam giác HAB có : góc BHA = góc DOA = 90
AD = AB (gt)
=> tam giác ODA = tam giác HAB (ch - gn)
=> DO = AH (định nghĩa) (3)
làm tương tự với tam giác AHC và tam giác EIA
=> AH = EI (4)
(3)(4) => DO = EI
có EI; DO _|_ AH (cách vẽ)=> EI // DO => góc IEK = góc KDO (định lí)
xét tam giác ODK và tam giác IEK có : góc DOK = góc EIK = 90
=> tam giác ODK = tam giác IEK (cgv - gnk)
=> DK = KE mà K nằm giữa D và E
=> K là trung điểm của DE
Cho tam giác ABC, M là trung điểm của BC. Trên nửa mp bờ AB ko chứa C vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mp bờ AC ko chứa B, vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM ta lấy điểm F sao cho M là trung điểm của À.
a) CMR: tam giác MAC= tam giác MBF => AC = BF
b) CMR: tam giác ADE = tam giác BAF
c) CM AM vuông góc DE
d) Từ A, vẽ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. CMR: K là trung điểm của DE
bn hãy vận dụng hết các kiến thức đã học
Nhớ lại các bài giảng của thầy cô giáo
Tìm các mối quan hệ giữa cái này và cái kia
sau đó =>............
b.
Trên tia đối của MA lấy điểm N sao cho MA=MN.
Kẻ \(DF\perp AM\left(F\in AM\right)\)
Tí nữa tớ hướng dẫn cho
A B C H D E K P Q câu a
ta xét \(\Delta DPA\) và \(\Delta AHB\) có \(\widehat{P}=\widehat{H}=90^0\) có \(\widehat{DAP}=\widehat{ABH}\) do cùng phụ với góc BAH và AD=AB
nên hai tam giác bằng nhau theo trường hợp cạnh huyền góc nhọn. do đó DP=AH
b. hoàn toàn tương tự ta chứng minh được EQ=AH do đó DP=EQ.
mà DP//EQ ( cùng vuông góc với AH) nên DPEQ là hình bình hành nên K là trung điểm DE