K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(g'\left( x \right) = y' = {\left( {2x + \frac{\pi }{4}} \right)^,}.\cos \left( {2x + \frac{\pi }{4}} \right) = 2\cos \left( {2x + \frac{\pi }{4}} \right)\)

b) \(g'\left( x \right) =  - 2{\left( {2x + \frac{\pi }{4}} \right)^,}.\sin \left( {2x + \frac{\pi }{4}} \right) =  - 4\sin \left( {2x + \frac{\pi }{4}} \right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

• Xét hàm số \(f\left( x \right) = 2x - \sin x\) có tập xác định \(D = \mathbb{R}\).

Vậy hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).

• Xét hàm số \(g\left( x \right) = \sqrt {x - 1} \)

ĐKXĐ: \(x - 1 \ge 0 \Leftrightarrow x \ge 1\)

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) có tập xác định \(D = \left[ {1; + \infty } \right)\).

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) là hàm căn thức nên liên tục trên khoảng \(\left( {1; + \infty } \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1}  = \sqrt {1 - 1}  = 0 = g\left( 1 \right)\)

Do đó hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục tại điểm \({x_0} = 1\).

Vậy hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = f\left( x \right).g\left( x \right) = \left( {2x - \sin x} \right)\sqrt {x - 1} \)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = f\left( x \right).g\left( x \right)\) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{2x - \sin x}}{{\sqrt {x - 1} }}\)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục trên khoảng \(\left( {1; + \infty } \right)\).

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,y'=\left(tanx\right)'=\left(\dfrac{sinx}{cosx}\right)'\\ =\dfrac{\left(sinx\right)'cosx-sinx\left(cosx\right)'}{cos^2x}\\ =\dfrac{cos^2x+sin^2x}{cos^2x}\\ =\dfrac{1}{cos^2x}\\ b,\left(cotx\right)'=\left[tan\left(\dfrac{\pi}{2}-x\right)\right]'\\ =-\dfrac{1}{cos^2\left(\dfrac{\pi}{2}-x\right)}\\ =-\dfrac{1}{sin^2\left(x\right)}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(y'=\left(cosx\right)'\\ =\left(\dfrac{\pi}{2}-x\right)'cos\left(\dfrac{\pi}{2}-x\right)\\ =-cos\left(\dfrac{\pi}{2}-x\right)\\ =-sinx\)

20 tháng 4 2022

Võ Ngọc Tú Uyênloading...  

4 tháng 4 2017

a) Cách 1: Ta có:

y' = 6sin5x.cosx - 6cos5x.sinx + 6sinx.cos3x - 6sin3x.cosx = 6sin3x.cosx(sin2x - 1) + 6sinx.cos3x(1 - cos2x) = - 6sin3x.cos3x + 6sin3x.cos3x = 0.

Vậy y' = 0 với mọi x, tức là y' không phụ thuộc vào x.

Cách 2:

y = sin6x + cos6x + 3sin2x.cos2x(sin2x + cos2x) = sin6x + 3sin4x.cos2x + 3sin2x.cos4x + cos6x = (sin2x + cos2x)3 = 1

Do đó, y' = 0.

b) Cách 1:

Áp dụng công thức tính đạo hàm của hàm số hợp

(cos2u)' = 2cosu(-sinu).u' = -u'.sin2u

Ta được

y' =[sin - sin] + [sin - sin] - 2sin2x = 2cos.sin(-2x) + 2cos.sin(-2x) - 2sin2x = sin2x + sin2x - 2sin2x = 0,

vì cos = cos = .

Vậy y' = 0 với mọi x, do đó y' không phụ thuộc vào x.

Cách 2: vì côsin của hai cung bù nhau thì đối nhau cho nên

cos2 = cos2 '

cos2 = cos2 .

Do đó

y = 2 cos2 + 2cos2 - 2sin2x = 1 +cos + 1 +cos - (1 - cos2x) = 1 +cos + cos + cos2x = 1 + 2cos.cos(-2x) + cos2x = 1 + 2cos2x + cos2x = 1.

Do đó y' = 0.


 

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Ta có: \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = f'\left( {{x_0}} \right);\mathop {\lim }\limits_{x \to {x_0}} \frac{{g\left( x \right) - g\left( {{x_0}} \right)}}{{x - {x_0}}} = g'\left( {{x_0}} \right)\)

Vậy \(h'\left( {{x_0}} \right) = f'\left( {{x_0}} \right) + g'\left( {{x_0}} \right)\).

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(y'=\left[sin\left(\dfrac{\pi}{3}-3x\right)\right]'\\ =\left(\dfrac{\pi}{3}-3x\right)'cos\left(\dfrac{\pi}{3}-3x\right)\\ =-3cos\left(\dfrac{\pi}{3}-3x\right)\)

a: \(y'=\left(x^2+2x\right)'\left(x^3-3x\right)+\left(x^2+2x\right)\left(x^3-3x\right)'\)

\(=\left(2x+2\right)\left(x^3-3x\right)+\left(x^2+2x\right)\left(3x^2-3\right)\)

\(=2x^4-6x^2+2x^3-6x+3x^4-3x^2+6x^3-6x\)

\(=5x^4+8x^3-9x^2-12x\)

b: y=1/-2x+5 

=>\(y'=\dfrac{2}{\left(2x+5\right)^2}\)

c: \(y'=\dfrac{\left(4x+5\right)'}{2\sqrt{4x+5}}=\dfrac{4}{2\sqrt{4x+5}}=\dfrac{2}{\sqrt{4x+5}}\)

d: \(y'=\left(sinx\right)'\cdot cosx+\left(sinx\right)\cdot\left(cosx\right)'\)

\(=cos^2x-sin^2x=cos2x\)

e: \(y=x\cdot e^x\)

=>\(y'=e^x+x\cdot e^x\)

f: \(y=ln^2x\)

=>\(y'=\dfrac{\left(-1\right)}{x^2}=-\dfrac{1}{x^2}\)