Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vào chữ số hàng trăm , thêm 5 đơn vị vào chữ số hàng chục , thêm 3 đơn vị vào chữ số hàng đơn vị thì ta vẫn được một số chính phương
Toán lớp 8 Số chính phương
Trần thị Loan 15/03/2015 lúc 23:50
Báo cáo sai phạm
Gọi số chính phương cần tìm là abcd
=> đặt abcd = n2
theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương
=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số
ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)
= (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3
= abcd + 1353 (*)
=> m2 = n2 + 1353 => m2 - n2 =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123
TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn
TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn
vậy số cần tìm là 562 = 3136
Gọi số chính phương cần tìm là abcd
=> đặt abcd = n2
theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương
=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số
ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)
= (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3
= abcd + 1353 (*)
=> m2 = n2 + 1353 => m2 - n2 =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123
TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn
TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn
vậy số cần tìm là 562 = 3136
Gọi số chính phương cần tìm là abcd
=> đặt abcd = n2
theo bài ra ta có (a+1)(b+3)(c+5)(d+3) là số chính phương
=> đặt (a+1)(b+3)(c+5)(d+3) = m2 trong đó 31< n< m < 100 vì giả thiết là số chính phương có 4 chữ số
ta có (a+1)(b+3)(c+5)(d+3) = (a+1) x 1000 + (b+3) x 100 + (c+5) x 10 + (d+3)
= (a x1000 + b x 100 + c x 10 + d) + 1000 + 300 + 50 + 3
= abcd + 1353 (*)
=> m2 = n2 + 1353 => m2 - n2 =1353 => (m - n)(m +n) = 1353 = 3.11.41 = 33.41 = 11.123
TH1: m-n = 33 và m+n = 41 => 2m = 74 => m = 37 => n = 4 không thoả mãn
TH2 : m - n = 11 và m + n = 123 => 2m = 134 => m = 67 => n = 56 thoả mãn
vậy số cần tìm là 562 = 3136
gọi A là số cp cần tìm. Đặt A = k^2 ( 31 <k < 100)
Theo đề ra A + 1000 + 300 + 50 + 3 = n^2 (n>k) <=> k^2 + 1353 = n^2
<=> (n - k)(n +k) = 1353 = 3.11.41. vậy có các khả năng sau
(n - k) = 3 & ( n +k ) =451 loại vì n+k <200
(n- k) = 11 & (n+k) = 123 <=> n= 67, k = 56. thay vào A = 3136 = 56 ^2, A + 1353=4489=67^2. thỏa mãn
(n -k) = 33 & (n +k)=41 <=> n = 37 k=4 loại.
vậy số chính phương cần tìm là 3136
Gọi:
+abcd= x^2; (1)
+(a+1)(b+3)cd=k^2; (2)
(2) ó k^2= (a+1)*1000+(b+3)*100+c*10+d=a*1000+b*100+c*10+d+1300=abcd+1300=x^2+1300
ð k^2-x^2=1300 hay (k-x)(k+x)=1300 (1)
Mà 1000<k^2<9999 => 31<k<100. Và tương tự 31<x<100.
ð 62<k+x<200.
Mặt khác ta có (k-x)+(k+x)=2k nên từ (1) => (k-x) và k+x đều là các số chẵn
Mà 1300=13*(2^2)*(5^2)
=.> (k-x)(k+x)=2*650=10*130=26*50
Do k-x< k+x và 62<k+x<200 nên => (k-x)(k+x)=10*130
ð k-x=10 và k+x=130 hay k=70 và x=60;
ð abcd=3600. Thừ lại thõa mãn.
Số cần tìm chỉ có duy nhất 1 số đó là 3136 nha bạn
k đúng cho mk
Bài toán tương đương với tìm số tự nhiên N có 4 chữ số sao cho N và \(N+1353\) đều là các SCP có 4 chữ số. Bạn chỉ cần đặt \(\left\{{}\begin{matrix}N=n^2\\N+1353=m^2\end{matrix}\right.\), trừ theo vế thu được \(\left(m-n\right)\left(m+n\right)=1353\). Tới đây bạn chặn \(0< m-n< m+n\) kèm theo \(32\le n\le92\) và \(49\le m\le99\) rồi chia trường hợp, đối chiếu điều kiện là xong.
a) \(\dfrac{1}{x^2+5x+4}+\dfrac{1}{x^2+11x+28}+\dfrac{1}{x^2+17x+20}=\dfrac{3}{4x-2}\) \(\left(x\ne-1;-4;-7;-10;\dfrac{1}{2}\right)\)
\(\Leftrightarrow\dfrac{3}{\left(x+1\right)\left(x+4\right)}+\dfrac{3}{\left(x+4\right)\left(x+7\right)}+\dfrac{3}{\left(x+7\right)\left(x+10\right)}=\dfrac{9}{4x-2}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+10}=\dfrac{9}{4x-2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)
Mà \(x\ne-4\Rightarrow x=-3\)
Vậy \(S=\left\{-3\right\}\)
b) Gọi số chính phương cần tìm đó là \(\overline{abcd}\) ( \(a,b,c,d\in N\) , \(a\ne0\))
Đặt \(\overline{abcd}=k^2\) \(\left(k\in N,31< k< 100\right)\)
=> Sau khi thêm 1 đơn vị vào chữ số hàng nghìn, thêm 3 đơn vị vào chữ số hàng trăm, thêm 5 đơn vị vào chữ số hàng chục, thêm 3 đơn vì vào chữ số hàng đơn vị thì ta được số \(\overline{\left(a+1\right)\left(b+3\right)\left(c+5\right)\left(d+3\right)}\)
Đặt \(\overline{\left(a+1\right)\left(b+3\right)\left(c+5\right)\left(d+3\right)=m^2}\) \(\left(m\in N,31< m< 100\right)\)
Ta có \(m^2-k^2=1353\Leftrightarrow\left(m+k\right)\left(m-k\right)=1353\)
=> \(\left(m+k\right),\left(m-k\right)\inƯ\left(1353\right)=\left\{1;1353;33;41;123;11;451;3\right\}\)
Mà \(m,k\in N;31< m,k< 100\)
=> 64 < m + k < 200
=> m + k = 123
=> m - k = 11
Ta có : m + k + m - k = 123 + 11 <=> m = 67
=> k = 56 ( TM ) => \(k^2=3136\)
Vậy số chính phương cần tìm là 3136