Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1
a (9+x)=2 ta có (9+x)= 9+x khi 9+x >_0 hoặc >_ -9
(9+x)= -9-x khi 9+x <0 hoặc x <-9
1)pt 9+x=2 với x >_ -9
<=> x = 2-9
<=> x=-7 thỏa mãn điều kiện (TMDK)
2) pt -9-x=2 với x<-9
<=> -x=2+9
<=> -x=11
x= -11 TMDK
vậy pt có tập nghiệm S={-7;-9}
các cau con lai tu lam riêng nhung cau nhan với số âm thi phan điều kiện đổi chiều nha vd
nhu cau o trên mk lam 9+x>_0 hoặc x>_0
với số âm thi -2x>_0 hoặc x <_ 0 nha
1a
x^2-8x<0
<=> x(x-8)<0
th1: x<0 và x-8>0
x<0 và x>8
<=> 8<x<0 ( vô lý)
th2: x>0 và x-8<0
<=> x>0 và x<8
<=> 0<x<8( tm)
vậy........
a) \(x^2-8x< 0\)
\(\Leftrightarrow x\left(x-8\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x-8< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-8>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 8\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x>8\end{cases}}\) (loại)
\(\Leftrightarrow0< x< 8\)
b) \(x^2< 6x-5\)
\(\Leftrightarrow x^2-6x+5< 0\)
\(\Leftrightarrow x^2-x-5x+5< 0\)
\(\Leftrightarrow x\left(x-1\right)-5\left(x-1\right)< 0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x-1>0\\x-5< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-5>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>1\\x< 5\end{cases}}\) hoặc \(\hept{\begin{cases}x< 1\\x>5\end{cases}}\) (loại)
\(\Leftrightarrow1< x< 5\)
c) \(\frac{x-3}{x-2}< 0\)
\(\Leftrightarrow\hept{\begin{cases}x-3>0\\x-2< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x-3< 0\\x-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>3\\x< 2\end{cases}}\) (loại) hoặc \(\hept{\begin{cases}x< 3\\x>2\end{cases}}\)
\(\Leftrightarrow2< x< 3\)
d) \(\frac{x+1}{x-3}>2\) (ĐK: \(x\ne3\) )
\(\Leftrightarrow\frac{x+1}{x-3}-2>0\)
\(\Leftrightarrow\frac{x+1-2\left(x-3\right)}{x-3}>0\)
\(\Leftrightarrow\frac{-x+7}{x-3}>0\)
\(\Leftrightarrow\hept{\begin{cases}-x+7>0\\x-3>0\end{cases}}\) hoặc \(\hept{\begin{cases}-x+7< 0\\x-3< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x>-7\\x>3\end{cases}}\) hoặc \(\hept{\begin{cases}-x< -7\\x< 3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< 7\\x>3\end{cases}}\) hoặc \(\hept{\begin{cases}x>7\\x< 3\end{cases}}\) (loại)
\(\Leftrightarrow3< x< 7\)
\(x^3-2x^2+3x-6< 0\)
\(\Leftrightarrow x^2\left(x-2\right)+3\left(x-2\right)< 0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3\right)< 0\)
\(\Leftrightarrow x-2< 0\) (Vì \(x^2+3>0\) \(\forall x\))
\(\Leftrightarrow x< 2\)
V...
a,\(2x+5=2-x\)
\(< =>2x+x+5-2=0\)
\(< =>3x+3=0\)
\(< =>x=-1\)
b, \(/x-7/=2x+3\)
Với \(x\ge7\)thì \(PT< =>x-7=2x+3\)
\(< =>2x-x+3+7=0\)
\(< =>x+10=0< =>x=-10\)( lọai )
Với \(x< 7\)thì \(PT< =>7-x=2x+3\)
\(< =>2x+x+3-7=0\)
\(< =>3x-4=0< =>x=\frac{4}{3}\) ( loại )
c,\(\frac{4}{x+2}-\frac{4x-6}{4x-x^3}=\frac{x-3}{x\left(x-2\right)}\left(đk:x\ne-2;0;2\right)\)
\(< =>\frac{4x\left(x-2\right)}{x\left(x-2\right)\left(x+2\right)}+\frac{4x-6}{x\left(x-2\right)\left(2+x\right)}=\frac{\left(x-3\right)\left(x+2\right)}{x\left(x-2\right)\left(x+2\right)}\)
\(< =>4x^2-8x+4x-6=x^2-x-6\)
\(< =>4x^2-x^2-4x+x-6+6=0\)
\(< =>3x^2-3x=0< =>3x\left(x-1\right)=0< =>\orbr{\begin{cases}x=0\left(loai\right)\\x=1\left(tm\right)\end{cases}}\)
1, a,\(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\)
Từ đó suy ra \(x=-\dfrac{5}{2}\) hoặc \(x=3\)
b, \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\left(x-2\right)\left(3x-1\right)=0\)
Từ đó suy ra \(x=2\) hoặc \(x=\dfrac{1}{3}\)
c, \(\left(2x+5\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\)
Áp dụng hằng đẳng thức hiệu hai bình phương để suy ra:
\(\Leftrightarrow\left(3x+7\right)\left(x+3\right)=0\)
Từ đó suy ra \(x=-\dfrac{7}{3}\) hoặc \(x=-3\)
d, \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-4x+4-x+2=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
Từ đó suy ra \(x=2\) hoặc \(x=3\)
e, \(2x^3+6x^2=x^2+3x\)
\(\Leftrightarrow2x^3+5x^2-3x=0\)
\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)
\(x\left(2x^2+6x-x-3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow x\left(2x-1\right)\left(x+3\right)=0\)
Từ đó suy ra \(x=0\) hoặc \(x=\dfrac{1}{2}\) hoặc \(x=-3\)
CHÚC BẠN HỌC GIỎI.................
Giải các phương trình và bất phương trình sau :
1.1
a) \(2x+3=0\)
\(\Leftrightarrow2x=-3\)
\(\Leftrightarrow x=\dfrac{-3}{2}\)
Tập nghiệm của pt là : \(S=\left\{\dfrac{-3}{2}\right\}\)
b) \(5x-3< 2x+9\)
\(\Leftrightarrow5x-2x< 3+9\)
\(\Leftrightarrow3x< 12\)
\(\Leftrightarrow x< 4\)
Tập nghiệm của BPT là : \(S=\left\{x|x< 4\right\}\)
1.2
a) \(3x+2=0\)
\(\Leftrightarrow3x=-2\)
\(\Leftrightarrow x=\dfrac{-2}{3}\)
Tập nghiệm của pt là : \(S=\left\{\dfrac{-2}{3}\right\}\)
b) \(-x+5>6-2x\)
\(\Leftrightarrow-x+2x>-5+6\)
\(\Leftrightarrow x>1\)
Tập nghiệm của BPT là : \(S=\left\{x|x>1\right\}\)
c) \(\dfrac{2x-5}{x+3}=4\)
ĐKXĐ : \(x+3\ne0\Rightarrow x\ne-3\)
\(\Leftrightarrow\dfrac{2x-5}{x+3}=\dfrac{4\left(x+3\right)}{x+3}\)
\(\Rightarrow2x-5=4x+12\)
\(\Leftrightarrow2x-4x=5+12\)
\(\Leftrightarrow-2x=17\)
\(\Leftrightarrow x=\dfrac{-17}{2}\)
Tập nghiệm của pt là : \(S=\left\{\dfrac{-17}{2}\right\}\)
d) \(\left(x+2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
Tập nghiệm của pt là : \(S=\left\{-2;3\right\}\)
1.3
a)\(\left(2x+5\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(2x+5-x-2\right).\left(2x+5+x+2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\3x+7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{-7}{3}\end{matrix}\right.\)
Tập nghiệm của pt là : \(S=\left\{\dfrac{-7}{3};-3\right\}\)
b) \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-3x-2x+6=0\)
\(\Leftrightarrow\left(x^2-3x\right)-\left(2x-6\right)=0\)
\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Tập nghiệm của pt là : \(S=\left\{2;3\right\}\)
a,A= x(x3-5x2+7x-3)
=x(x3-3x2-2x2+6x+x-3)
=x(x-3)(x2-2x+1)
=x(x-3)(x-1)2
vi (x-1)2>=0
=>Để A <0 thì x(x-3)<0
TH1:x>0 va x-3<0
x>0 va x<3
=> 0<x<3
TH2 :x<0 va x-3>0
x<0 và x>3( loại vỉ 2 dk trái ngược nhau )
Vay 0<x<3 thi thoa man....... .........
Phần b tương tự
C1a) x2 - 2x + 1 < 9
⇔ ( x - 1)2 < 9
⇔ / x - 1/ < 3
⇔ -3 < x - 1 < 3
⇔ - 2 < x < 4
C2a) x2 - 2x + 1 < 9
⇔ x2 - 2x - 8 < 0
⇔ x2 + 2x - 4x - 8 < 0
⇔ x( x + 2) - 4( x + 2) < 0
⇔ ( x + 2)( x - 4) < 0
Lập bảng xét dấu , ta có :
x x+2 x-4 Tích số -2 4 0 0 0 0 - + + - - + + - +
Vậy , nghiệm của BPT : - 2 < x < 4
b) x2 - 5x + 6 < 0
⇔ x2 - 2x - 3x + 6 < 0
⇔ x( x - 2) - 3( x - 2) < 0
⇔ ( x - 2)( x - 3) < 0
Lập bảng xét dấu , ta có :
x x-2 x-3 Tích Số 2 3 0 0 0 0 - + + - - + + - +
Vậy , nghiệm của BPT : 2 < x < 3