K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2018

b)P = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4

=>P= [(x + y)(x + 4y)][(x + 2y)(x + 3y)] + y^4

=> P = (x² + 5xy + 4y²)( x² + 5xy + 6y²) + y^4

Đặt x² + 5xy + 5y² = t ( t Є Z)

=> A = (t - y²)( t + y²) + y^4
=> A = t² –y^4 + y^4
=> A = t²
=> A = (x² + 5xy + 5y²)²

Vì x, y, z Є Z
=> { x² Є Z,
{ 5xy Є Z,
{ 5y² Є Z


=> x² + 5xy + 5y² Є Z

=> (x² + 5xy + 5y²)² là số chính phương.

Vậy A là số chính phương.

18 tháng 9 2018

a) Ta có:

\(A=n^3\left(n^2-7\right)^2-36n\)

\(A=n.n^2\left(n^2-7\right)^2-6^2n\)

\(A=n\left[n^2\left(n^2-7\right)^2-6^2\right]\)

\(A=n\left\{\left[n\left(n^2-7\right)\right]^2-6^2\right\}\)

\(A=n\left[\left(n^3-7n\right)^2-6^2\right]\)

\(A=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)

\(A=n\left(n-1\right)\left(n^2+n-6\right)\left(n+2\right)\left(n^2-2n-3\right)\)

\(A=n\left(n-1\right)\left(n-2\right)\left(n+3\right)\left(n+2\right)\left(n-3\right)\)

\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là tích của 7 số tự nhiên liên tiếp

=> A chia hết cho 3, 5 , 7

Mà 3,5,7 là những số nguyên tố cùng nhau

=> A chia hết cho 3.5.7

=> A chia hết cho 105

b) Ta có:

\(P=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(P=\left[\left(x+y\right)\left(x+4y\right)\right]\left[\left(x+2y\right)\left(x+3y\right)\right]+y^4\)

\(P=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

\(P=\left(x^2+5xy+5y^2-y^2\right)\left(x^2+5xy+5y^2+y^2\right)+y^4\)

\(P=\left(x^2+5xy+5y^2\right)^2-y^4+y^4\)

\(P=\left(x^2+5xy+5y^2\right)^2\)

Vậy P là số chính phương

27 tháng 3 2017

Ta có:

\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\) thì:

\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)

\(=t^2-y^4+y^4=t^2\)

\(=\left(x^2+5xy+5y^2\right)^2\)

Vì \(x,y,z\in Z\) nên:

\(x^2\in Z,5xy\in Z,5y^2\in Z\)

\(\Leftrightarrow x^2+5xy+5y^2\in Z\)

Vậy \(A\) là số chính phương (Đpcm)

9 tháng 8 2019

a. \(A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

Đặt \(t=x^2+5xy+5y^2\left(t\inℤ\right)\)

\(\Rightarrow A=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2=\left(x^2+5xy+5y^2\right)^2\)

Vậy giá trị của A là một số chính phương

2 tháng 8 2023

Ta có \(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\left(x+y\right)\left(x+4y\right)\left(x+2y\right)\left(x+3y\right)+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

\(=\left(x^2+5xy+5y^2-y^2\right)\left(x^2+5xy+5y^2+y^2\right)+y^4\)

\(=\left(x^2+5xy+5y^2\right)^2\) là số chính phương. \(\Rightarrowđpcm\)

23 tháng 10 2020

đéo biết

24 tháng 10 2020

1) \(A=-2x^2-10y^2+4xy+4x+4y+2013=-2\left(x-y-1\right)^2-8\left(y-\frac{1}{2}\right)^2+2017\le2017\forall x,y\inℝ\)Đẳng thức xảy ra khi x = 3/2; y = 1/2

2) \(A=a^4-2a^3+2a^2-2a+2=\left(a^2+1\right)\left(a-1\right)^2+1\ge1\)

Đẳng thức xảy ra khi a = 1

3) \(N=\left(x-y\right)\left(x-2y\right)\left(x-3y\right)\left(x-4y\right)+y^4=\left(x^2-5xy+4y^2\right)\left(x^2-5x+6y^2\right)+y^4=\left(x^2-5xy+4y^2\right)^2+2y^2\left(x^2-5xy+4y^2\right)+y^4=\left(x^2-5xy+5y^2\right)^2\)(là số chính phương, đpcm)

4) \(a^3+b^3=3ab-1\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-3ab+1=0\Leftrightarrow\left[\left(a+b\right)^3+1\right]-3ab\left(a+b+1\right)=0\)\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1\right)-3ab\left(a+b+1\right)=0\Leftrightarrow\left(a+b+1\right)\left(a^2+b^2-ab-a-b+1\right)=0\)Vì a, b dương nên a + b + 1 > 0 suy ra \(a^2+b^2-ab-a-b+1=0\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\Leftrightarrow a=b=1\)

Do đó \(a^{2018}+b^{2019}=1+1=2\)

5) \(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3=3n\left(n^2+5\right)+9\left(n^2+1\right)⋮9\)(Do số chính phương chia 3 dư 1 hoặc 0)

AH
Akai Haruma
Giáo viên
9 tháng 4 2018

Lời giải:

\(A=(x+y)(x+2y)(x+3y)(x+4y)+y^4\)

\(A=[(x+y)(x+4y)][(x+2y)(x+3y)]+y^4\)

\(A=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4\)

Đặt \(x^2+5xy+4y^2=a\). Khi đó:

\(A=a(a+2y^2)+y^4=a^2+2ay^2+(y^2)^2\)

hay \(A=(a+y^2)^2\) là một số chính phương.

Ta có đpcm.

9 tháng 4 2018

\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)\(A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\)

\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)

\(\Rightarrow A=t^2-y^4+y^4\)

\(\Rightarrow A=t^2\)

\(\Rightarrow A=\left(x^2+5xy+5y^2\right)^2\)

\(x;y;z\in Z\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\in Z\\5xy\in Z\\5y^2\in Z\end{matrix}\right.\)\(\Rightarrow x^2+5xy+5y^2\in Z\)

\(\Rightarrow\left(x^2+5xy+5y^2\right)^2\) là số chính phương

Nên a là số chính phương ( đpcm )

22 tháng 1 2017

ta có (x+y)(x+2y)(x+3y)(x+4y)+y^4

=(x+y)(x+4y)(x+2y)(x+3y)+y^4

=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4

đặt x^2+5xy=a

<=>A=a(a+2y^2)+y^4

=a^2+2.a.y^2+y^4

=(a+y^2)^2

là scp

4 tháng 10 2019

2. Ta có: P = 2x2 + y2 - 4x - 4y + 10

P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4

P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)\(\forall\)x;y

=> P luôn dương với mọi biến x;y

3 Ta có:

(2n + 1)(n2 - 3n - 1) - 2n3 + 1

= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1

= -5n2 - 5n = -5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

20 tháng 4 2020

1×2=2

7 tháng 12 2018

B1) Từ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{xy+yz+zx}{xyz}=0\)

\(\Rightarrow xy+yz+zx=0\)

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

                                      \(=x^2+y^2+z^2+2.0\)

                                       \(=x^2+y^2+z^2\left(đpcm\right)\)

B2)  \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a;b\\\left(b-c\right)^2\ge0\forall b;c\\\left(c-a\right)^2\ge0\forall c;a\end{cases}\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c\left(đpcm\right)}\)

8 tháng 12 2018

\(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right).2=\left(ab+bc+ca\right).2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Ta có: \(\hept{\begin{cases}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{cases}}\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Leftrightarrow a=b=c\)

Vậy \(a^2+b^2+c^2=ab+bc+ca\)thì \(a=b=c\)