Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 21+22+......+22010
=2(1+2)+......+22009(1+2)
= 2.3+ .......+22009.3
=3(2+......22009) chia hết cho 3
còn các câu sau bạn làm tương tự, có mẹo đó
sau đay là mẹo:
Khi bạn đặt thứa số chung thi bạn lấy 1 công với 2 hoặc 3( tùy vào đề bài) sau đó ban công bao nhiêu ssoo mà được két quả bằng số đề bảo chứng minh chia hết rồi từ đó quyết định gộp bao nhiêu ssos hạng vào 1 nhóm
Bài 1:
Vì \(ƯCLN\left(a,b\right)=16\Rightarrow\hept{\begin{cases}a=16.m\\b=16.n\end{cases};\left(m,n\right)=1;m,n\in N}\)
Thay a = 16.m, b = 16.n vào a+b = 128, ta có:
\(16.m+16.n=128\)
\(\Rightarrow16.\left(m+n\right)=128\)
\(\Rightarrow m+n=128\div16\)
\(\Rightarrow m+n=8\)
Vì m và n nguyên tố cùng nhau
\(\Rightarrow\) Ta có bảng giá trị:
m | 1 | 8 | 3 | 5 |
n | 8 | 1 | 5 | 3 |
a | 16 | 128 | 48 | 80 |
b | 128 | 16 | 80 | 48 |
Vậy các cặp (a,b) cần tìm là:
(16; 128); (128; 16); (48; 80); (80; 48).
Bài 2:
Gọi d là ƯCLN (2n+1, 2n+3), d \(\in\) N*
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Vì 2n+3 và 2n+1 không chia hết cho 2
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+1,2n+3\right)=1\)
\(\Rightarrow\) 2n+1 và 2n+3 là hai số nguyên tố cùng nhau.
Bài 2:
a) A = 20 + 21 + 22 + 23 + ... + 22010
=> 2A = 2 + 22 + 23 + ... + 22011
=> 2A - A = ( 2 + 22 + 23 + ... + 22011 ) - ( 20 + 21 + 22 + ... + 22010 )
=> A = 22011 - 20
=> A = 22011 - 1
Vì 22011 - 1 > 22010 - 1 nên A > B
A=(2^1+2^2+2^3+2^4+2^5+2^6)+................+(2^2005+2^2006+2^2007+2^2008+2^2009+2^2010)
A=2^1(1+2+2^2+2^3+2^4+2^5)+...................+2^2005(1+2+2^2+2^3+2^4+2^5)
A=2.63+......................+2^2005.63
A=63.(2+..............................+2^2005)
VÌ 63 CHIA HẾT CHO 3 VÀ 7 VẬY A CHIA HẾT CHO 3 VÀ 7.
TICK CHO MÌNH NHA
bn nghĩ kĩ ik oy hãy hỏi!!!