Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ài 2:
a) f(1) = a + b + c + d = 0
Vậy 1 là 1 trong các nghiệm của f(x)
b) f(x)=5x3−7x2+4x−2f(x)=5x3−7x2+4x−2 có tổng các hệ số là : 5 - 7 + 4 - 2 = 0
Theo a) \Rightarrow 1 là 1 trong các nghiệm của f(x).
Bài 3:
f(x)=3x3+4x2+2x+1f(x)=3x3+4x2+2x+1
→f(−1)=−3+4−2+1=0→f(−1)=−3+4−2+1=0
Vậy (-1) là một trong các nghiệm của f(x).
Lời giải:
Bạn hiểu rằng đa thức $f(x)$ có nghiệm $x=a$ khi mà $f(a)=0$
a) Theo đề bài:
\(f(x)=3x^3+4x^2+2x+1\)
\(\Rightarrow f(-1)=3(-1)^3+4(-1)^2+2(-1)+1=0\)
Do đó $x=-1$ là một nghiệm của $f(x)$ (đpcm)
b)
\(f(x)=ax^3+bx^2+cx+d\) nhận $x=-1$ là nghiệm khi và chỉ khi :
\(f(-1)=a(-1)^3+b(-1)^2+c(-1)+d=0\)
\(\Leftrightarrow -a+b-c+d=0\)
\(\Leftrightarrow a+c=b+d\) (đpcm)
Ta có:
\(a+b=c+d\)
\(\Leftrightarrow a+c=b+d\)
\(\Leftrightarrow-a+b-c+d=0\)
\(\Leftrightarrow P\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d\)
\(\Leftrightarrow-a+b-c+d=0\)
Vậy đa thức \(P\left(x\right)=ax^3+bx^2+cx+d\) có 1 trong nghiệm bằng \(-1\) nếu \(a+b=c+d\) (Đpcm)
\(M_{\left(x\right)}=a\cdot x^3+b\cdot x^2+c\cdot x+d\\ M_{\left(0\right)}=d\)
Mà M(x) nguyên nên d nguyên
\(M_{\left(1\right)}=a+b+c+d\) mà d nguyên nên a+b+c nguyên
\(M_{\left(2\right)}=8a+4b+2c+d\)mà d nguyên, a+b+c nguyên nên 6a+2b nguyên
\(M_{\left(-1\right)}=-a+b-c+d\)mà d nguyên, a+b+c nguyên nên b nguyên
Vì b nguyên mà 6a+2b nguyên nên 6a nguyên, 2b nguyên
\(P\left(0\right)=d\inℤ\left(1\right)\)
\(P\left(1\right)=a+b+c+d\inℤ\left(2\right)\)
\(P\left(-1\right)=-a+b-c+d\inℤ\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow2b\inℤ,2a+2c\inℤ\)
\(P\left(2\right)=8a+4b+2c+d=6a+4b+2a+2c+d\inℤ\)
\(\Rightarrow6a\inℤ\)
Vậy \(6a,2b,a+b+c\) và \(d\)là số nguyên
Làm hơi dài dòng tẹo nhé
f(0)=d là số lẻ
f(1)=a+b+c+d là số lẻ => a+b+c là số chẵn
Giả sử nghiệm x chẵn => f(x) lẻ khác 0 => loại
Giả sử nghiệm x lẻ
=> Tính chẵn lẻ của ax3 phụ thuộc vào a
Tính chẵn lẻ của bx2 phụ thuộc vào b
Tính chẵn lẻ của cx phụ thuộc vào c
d là số lẻ
Mà a+b+c là số chẵn=> ax3+bx2+cx là số chẵn => ax3+bx2+cx+d là số lẻ khác 0
Vậy f(x) không thể có nghiệm nguyên
Hơi khó hỉu chút nhé ahihi
xin lỗi nha,mik chưa học toán lớp 7,bn thông cảm nha!
ko biet ban
\(a)\)\(5x^3-7x^2+4x-2=0\)
\(\Leftrightarrow\)\(\left(5x^3-5x^2\right)-\left(2x^2-4x+2\right)=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(\sqrt{2}x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-2\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(2x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(5x^2-2x+2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\5x^2-2x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\5x^2-2x+2=0\end{cases}}}\)
Vậy \(x=1\) là một trong các nghiệm của đa thức \(f\left(x\right)\)
Hok tốt nhé eiu :>