K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2016

a) 

  1. Với x = 0 => y = 0 => z=0 

=> x = y = z = 0

     2.Với x , y , z khác 0

Từ \(x^2=yz\)\(\Rightarrow\)\(x^3=xyz\)

\(y^2=xz\Rightarrow y^3=xyz\)

\(z^2=xy\Rightarrow z^3=xyz\)

Do đó : \(x^3=y^3=z^3\Rightarrow x=y=z\)

b)

\(x-x^2-1=-\left(x+\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)

14 tháng 12 2015

Thử tiếp này \(\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\)

=> \(\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right)\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-xz\right)\left(z^2-xy\right)}\)

 

14 tháng 12 2015

Có \(\frac{x^2-yz}{a}=\frac{y^2-xz}{b}=\frac{z^2-xy}{c}\)

=> \(\frac{a}{x^2-yz}=\frac{b}{y^2-xz}=\frac{c}{z^2-xy}\)

=> \(\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-xz\right).\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-xz\right).\left(z^2-xy\right)}\)

\(=\frac{b^2}{\left(y^2-xz\right)^2}=\frac{ac}{\left(x^2-yz\right).\left(z^2-xy\right)}=\frac{b^2-ac}{\left(y^2-xz\right)^2-\left(x^2-yz\right).\left(z^2-xy\right)}\)

\(=\frac{c^2}{\left(z^2-xy\right)^2}=\frac{ab}{\left(x^2-yz\right).\left(y^2-xz\right)}=\frac{c^2-ab}{\left(z^2-xy\right)^2-\left(x^2-yz\right).\left(y^2-xz\right)}\)

Xét (x2 - yz)2 - (y2 - xz)(z2 - xy) 

= ...................... (Tui xét phía dưới rùi kéo xuống phía dưới mà coi)

= x(x3 + y3 + z3 - 3xyz)

Tương tự, ta có (y2-xz)2 - (x2 - yz).(z2 - xy) = y.(x3 + y3 + z3 - 3xyz)

(z2 - xy)2 - (x2 - yz).(y2 - xz) = z.(x3 + y3 + z3 - 3xyz)

=> \(\frac{a^2-bc}{x\left(x^2+y^3+z^3-3xyz\right)}=\frac{b^2-ac}{y\left(x^3+y^3+z^3-3xyz\right)}=\frac{c^2-ab}{z\left(x^3+y^3+z^3-3xyz\right)}\)

=> \(\frac{a^2-bc}{x}=\frac{b^2-ac}{y}=\frac{c^2-ab}{z}\)(Đpcm)

7 tháng 3 2021

Ta có \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\)

=> \(\frac{xyz}{xz+yz}=\frac{xyz}{xy+xz}=\frac{xyz}{xy+yz}\)

=> \(xz+yz=xy+xz=xy+yz\)(vì x ; y ;z \(\ne0\Leftrightarrow xyz\ne0\))

=> \(\hept{\begin{cases}xz+yz=xy+xz\\xy+xz=xy+yz\\xz+yz=xy+yz\end{cases}}\Rightarrow\hept{\begin{cases}yz=xy\\xz=yz\\xz=xy\end{cases}}\Rightarrow\hept{\begin{cases}z=x\\x=y\\y=z\end{cases}}\Rightarrow x=y=z\)

Khi đó M = \(\frac{x^2+y^2+z^2}{xy+yz+zx}=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}=1\left(\text{vì }x=y=z\right)\)