Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi G là trọng tâm của \(\Delta ABC\)
Áp dụng bất đẳng thức tam giác vào các tam giác AGB, AGC và BGC, ta được:
\(\hept{\begin{cases}AG+BG>AB\\AG+GC>AC\\BG+GC>BC\end{cases}}\)
Cộng từng vế của các BĐT trên, ta được:
\(2\left(AG+GC+BG\right)>AB+AC+BC\)
Mà theo t/c của đường trung tuyến thì
\(\hept{\begin{cases}AG=\frac{2}{3}AN\\GC=\frac{2}{3}CQ\\BG=\frac{2}{3}BP\end{cases}}\)
\(\Rightarrow2\left(\frac{2}{3}AN+\frac{2}{3}CQ+\frac{2}{3}BP\right)>AB+AC+BC\)
\(\Rightarrow2.\frac{2}{3}\left(AN+CQ+BP\right)>AB+AC+BC\)
\(\Rightarrow\frac{4}{3}\left(AN+CQ+BP\right)>AB+AC+BC\left(đpcm\right)\)
a) Xét ∆BAD và ∆ACE có:
^BDA=^AEC (cùng bằng 90 độ)
AB=AC (gt)
^BAD=^ACE (cùng phụ với ^EAC)
suy ra ∆BAD=∆ACE (cạnh huyền-góc nhọn)
b) Do ∆BAD=∆ACE nên AD=CE và AE=BD
mà DE=DA+AE
suy ra DE = CE+BD (đpcm)
b) Có: BAP + PAC = 90o
t/g BPA vuông tại P có: ABP + BAP = 90o
Suy ra PAC = ABP
Xét t/g BPA vuông tại P và t/g AQC vuông tại Q có:
AB = AC (gt)
ABP = CAQ (cmt)
Do đó, t/g BPA = t/g AQC ( cạnh huyền - góc nhọn)
=> AP = QC (2 cạnh tương ứng)
và BP = AQ (2 cạnh tương ứng)
= AP + PQ = QC + PQ
=> PQ = BP - QC (đpcm)
(Bạn tự vẽ hình giùm)
c/ \(\Delta MPB\)vuông và \(\Delta CQN\)vuông có: MB = CN (gt)
\(\widehat{M}=\widehat{N}\)(\(\Delta AMN\)cân tại A)
=> \(\Delta MPB\)vuông = \(\Delta CQN\)vuông (ch. gn) => PB = QN (hai cạnh tương ứng) (đpcm)
Còn câu d thì mình không biết làm. Bạn có thể nhờ bạn khác giải giùm.