K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

\(\left(a-b\right)^2\ge0< =>a^2+b^2\ge2ab\\ \left(b-c\right)^2\ge0< =>b^2+c^2\ge2bc\\ \left(c-a\right)^2\ge0< =>a^2+c^2\ge2ac\) ;

Cộng các vế tương ứng của 3 bất pt trên ta đc:

\(a^2+b^2+c^2\ge ab+bc+ac\)

<=> \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

<=>\(0\ge3\left(ab+bc+ac\right)\)

=> ĐPCM

Dấu = xảy ra a=b=c=0

28 tháng 2 2017

Chứng minh gì vậy ????

5 tháng 9 2017

1. Ta có: \(\dfrac{a}{b}=\dfrac{ab}{cd},\dfrac{c}{d}=\dfrac{bc}{bd}\)

a) Mẫu chung bd > 0 ( do b > 0, d > 0 ) nên nếu \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\) thì ad < bc

b) Ngược lại, Nếu ad < bc thì \(\dfrac{ad}{bd}< \dfrac{bc}{bd}.\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\)

Ta có thể viết: \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)

5 tháng 9 2017

2. a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\) ( 1 )

Thêm ab vào 2 vế của (1): \(ad+ab< bc+ab\)

\(a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) ( 2 )

Thêm cd vào 2 vế của (1): \(ad+cd< bc+cd\)

\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( 3 )

Từ (2) và (3) ta có: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

9 tháng 6 2017

Ta có:

\(\dfrac{a}{b}=\dfrac{a.d}{b.d}\)\(\dfrac{c}{d}=\dfrac{c.b}{d.b}\)

Từ trên suy ra :

Nếu ad < bc thì \(\dfrac{a}{b}< \dfrac{c}{d}\) \(\left(ĐPCM\right)\)

6 tháng 12 2017

Ta có; \(\frac{a+b-3c}{c}+4=\frac{b+c-3a}{a}+4=\frac{c+a-3b}{b}+4 \)

<=>\(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b} \)

Mà a,b,c>0=>a+b+c>0

=>\(\frac{1}{a}=\frac{1}{c}=\frac{1}{b} \)

=>a=b=c(đpcm)

19 tháng 8 2017

Ta có M=\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\)

Vì vai trò a,b,c là như nhau nên ta giả sử 0<a<b<a

Khi đó :\(\dfrac{a}{a+b}>\dfrac{a}{a+b+c};\dfrac{b}{b+c}>\dfrac{b}{a+b+c};\dfrac{c}{c+a}>\dfrac{c}{a+b+c}\)

=>M=\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a+b+c}{a+b+c}=1\left(1\right)\)

Lại có \(\dfrac{a}{a+b}< \dfrac{a+c}{a+b+c};\dfrac{b}{b+c}< \dfrac{a+b}{a+b+c};\dfrac{c}{c+a}< \dfrac{c+b}{a+b+c}\)

Cộng các bđt trên theo vế ta có:

M=\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{b+c}{a+b+c}+\dfrac{c+a}{a+b+c}+\dfrac{a+b}{a+b+c}\)

=>M=\(\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)

=>1<M<2

=>M không phải là số nguyên (đpcm)

Chúc Bạn Học Tốt