K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 6 2020

\(-\frac{\pi}{2}< a< 0\Rightarrow cosa>0\)

\(\Rightarrow cosa=\sqrt{1-sin^2a}=\frac{4}{5}\)

\(tana=\frac{sina}{cosa}=-\frac{3}{4}\)

\(A=\frac{tana+cota}{1+tan^2a}=\frac{tana+\frac{1}{tana}}{1+tan^2a}=\frac{1+tan^2a}{\left(1+tan^2a\right)tana}=\frac{1}{tana}=cota\)

NV
1 tháng 6 2020

\(0< a< \frac{\pi}{2}\Rightarrow cosa>0\Rightarrow cosa=\sqrt{1-sin^2a}=\frac{4}{5}\)

\(\Rightarrow tana=\frac{sina}{cosa}=\frac{3}{4}\) ; \(cota=\frac{1}{tana}=\frac{4}{3}\)

\(\Rightarrow A=\frac{\frac{4}{3}+\frac{3}{4}}{\frac{4}{3}-\frac{3}{4}}=...\)

\(\frac{2sina+3cosa}{4sina-5cosa}=\frac{\frac{2sina}{cosa}+\frac{3cosa}{cosa}}{\frac{4sina}{cosa}-\frac{5cosa}{cosa}}=\frac{2tana+3}{4tana-5}=\frac{2.3+3}{4.3-5}=...\)

\(A=\frac{2sin^2a-3cos^2a}{sin^2a-2sina.cosa-cos^2a}=\frac{\frac{2sin^2a}{sin^2a}-\frac{3cos^2a}{sin^2a}}{\frac{sin^2a}{sin^2a}-\frac{2sina.cosa}{sin^2a}-\frac{cos^2a}{sin^2a}}=\frac{2-3cot^2a}{1-2cota-cot^2a}=\frac{2-3.3^2}{1-2.3-3^2}=...\)

31 tháng 7 2019

cái câu 1 kia lạ thật, phần phía trc có ngoặc thì phải nhân vs hạng tử nào đó chứ nhỉ? Và mk tính ra kq là \(-\cos^22\alpha\)

\(VT=\cos^4\alpha+\sin^4\alpha-2\cos^6\alpha-2\sin^6\alpha\)

\(=\sin^4\alpha\left(1-2\sin^2\alpha\right)-\cos^4\alpha\left(2\cos^2\alpha-1\right)\)

\(=\sin^4\alpha.\cos2\alpha-\cos^4\alpha.\cos2\alpha\)

\(=\cos2\alpha\left(\sin^2\alpha.\sin^2\alpha-\cos^4\alpha\right)\)

\(=\cos2\alpha.\left[\left(1-\cos^2\alpha\right)^2-\cos^4\alpha\right]\)

\(=\cos2\alpha.\left(1-2\cos^2\alpha\right)\)

\(=-\cos^22\alpha\)

2/ \(VT=\frac{1-\cos^2\alpha+\cos^2\alpha}{1+\sin2\alpha}=\frac{1}{1+\sin2\alpha}\)

\(VP=\frac{\frac{\sin\alpha}{\cos\alpha}-1}{\frac{\sin\alpha}{\cos\alpha}+1}=\frac{\frac{\sin\alpha-\cos\alpha}{\cos\alpha}}{\frac{\sin\alpha+\cos\alpha}{\cos\alpha}}=\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)

hmm, câu 2 có vẻ vô lí, bn thử nhân chéo lên mà xem, nó ko ra KQ = nhau đâu

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

1)

\((\cos^4a+\sin ^4a)-2(\cos^6a+\sin ^6a)=(\cos ^4a+\sin ^4a)-2(\cos ^2a+\sin ^2a)(\cos ^4a-\cos ^2a\sin ^2a+\sin ^4a)\)

\(=(\cos ^4a+\sin ^4a)-2(\cos ^4a-\cos ^2a\sin ^2a+\sin ^4a)\)

\(=-(\cos ^4a-2\sin ^2a\cos ^2a+\sin ^4a)=-(\cos ^2a-\sin ^2a)^2=-\cos ^22a\)

(bạn xem lại đề. Nếu thay $(\cos ^4a+\sin ^4a)$ thành $3(\cos ^4a+\sin ^4a)$ thì kết quả thu được là $(\cos ^2a+\sin ^2a)^2=1$ như yêu cầu)

2) Sửa đề:

\(\frac{\sin ^2a-\cos ^2a}{1+2\sin a\cos a}=\frac{(\sin a-\cos a)(\sin a+\cos a)}{\sin ^2a+\cos ^2a+2\sin a\cos a}=\frac{(\sin a-\cos a)(\sin a+\cos a)}{(\sin a+\cos a)^2}\)

\(=\frac{\sin a-\cos a}{\sin a+\cos a}=\frac{\frac{\sin a}{\cos a}-1}{\frac{\sin a}{\cos a}+1}=\frac{\tan a-1}{\tan a+1}\)

Bạn lưu ý viết đề bài chuẩn hơn.

9 tháng 10 2016

\(sina+cosa=\sqrt{2}\Leftrightarrow\left(sina+cosa\right)^2=2\\ \)

\(\Leftrightarrow\sin^2a+2\sin a.cosa+cos^2a=2\)

\(\Leftrightarrow1+2.sina.cosa=2\)

\(\Leftrightarrow2.sina.cosa=2-1=1\)

\(\Leftrightarrow\sin a.cosa=\frac{1}{2}\)

Vậy  P=sina.cosa=\(\frac{1}{2}\)

\(Q=\sin^4a+cos^4a\)

\(\Leftrightarrow\left(sin^2a\right)^2+\left(cos^2a\right)^2\)

\(\Leftrightarrow\left(sin^2a+cos^2a\right)^2-2.sin^2a.cos^2a\)

\(\Leftrightarrow1^2-2.sin^2a.cos^2a\) tách tiếp rồi thế vào là được .tương tự phàn P ý
còn R thì tách sin^3a=sin^2a+sina tương tự cos mũ 3 a cụng vậy
theo tớ là như thế còn có sai thì đừng có ném đá ném gạch na

 

 

8 tháng 6 2020

Hình như câu 2 b, chỗ cos phải là -0,8 chứ nhỉ

8 tháng 6 2020

vậy thì kết quả là
\(\sin2\alpha=-0.96\)
\(\)còn \(\cos\left(\alpha+\frac{\pi}{6}\right)\) thì đúng vì -(-0.8) mà sorry thiếu ngủ hôm qua -_-

Bài 1) Đơn giản các biểu thức sau (giả sử các biểu thức đều có nghĩa) :B= \(\sqrt{2}-\frac{1}{sin\left(x+2013\pi\right)}\cdot\sqrt{\frac{1}{1+cosx}+\frac{1}{1-cosx}}\) với \(\pi< x< 2\pi\) Bài 2) Tính các giá trị lượng giác còn lại của góc \(\alpha\) biết: a) \(\sin\alpha=\frac{1}{3}\)và 90 < \(\alpha\) < 180 b) \(\cos\alpha=\frac{-2}{3}\left(\pi< \text{​​}\alpha< \frac{3\pi}{2}\right)\) Bài 3) a) Tính các giá trị lượng giác còn...
Đọc tiếp

Bài 1) Đơn giản các biểu thức sau (giả sử các biểu thức đều có nghĩa) :B= \(\sqrt{2}-\frac{1}{sin\left(x+2013\pi\right)}\cdot\sqrt{\frac{1}{1+cosx}+\frac{1}{1-cosx}}\) với \(\pi< x< 2\pi\)

Bài 2) Tính các giá trị lượng giác còn lại của góc \(\alpha\) biết:
a) \(\sin\alpha=\frac{1}{3}\)và 90 < \(\alpha\) < 180

b) \(\cos\alpha=\frac{-2}{3}\left(\pi< \text{​​}\alpha< \frac{3\pi}{2}\right)\)

Bài 3) a) Tính các giá trị lượng giác còn lại của góc \(\alpha\), biết sin\(\alpha\) =\(\frac{1}{5}\) và tan\(\alpha\)+cot\(\alpha\) < 0
b) Cho \(3\sin^4\alpha-cos^4\alpha=\frac{1}{2}\). Tính giá trị biểu thức A=\(2sin^4\alpha-cos\alpha\)
Bài 4) a) Cho \(\cos\alpha=\frac{2}{3}\) Tính giá trị biểu thức: A=\(\frac{tan\alpha+3cot\alpha}{tan\alpha+cot\alpha}\)

b) Cho \(\tan\alpha=3\) Tính giá trị biểu thức: B=\(\frac{sin\alpha-cos\alpha}{sin^3\alpha+3cos^3\alpha+2sin\alpha}\)

c) Cho \(\cot\alpha=\sqrt{5}\) Tính giá trị biểu thức: C=\(sin^2\alpha-sin\alpha\cdot cos\alpha+cos^2\alpha\)

Bài 5) Chứng minh các hệ thức sau:

a) \(\frac{1+sin^4\alpha-cos^4\alpha}{1-sin^6\alpha-cos^6\alpha}=\frac{2}{3cos^2\alpha}\)

b) \(\frac{sin^2\alpha\left(1+cos\alpha\right)}{cos^2\alpha\left(1+sin\alpha\right)}=\frac{sin\alpha+tan\alpha}{cos\alpha+cot\alpha}\)

c) \(\frac{tan\alpha-tan\beta}{cot\alpha-cot\beta}=tan\alpha\cdot tan\beta\)

d) \(\frac{cos^2\alpha-sin^2\alpha}{cot^2\alpha-tan^2\alpha}=sin^2\alpha\times cos^2\alpha\)

Bài 6) Cho \(cos4\alpha+2=6sin^2\alpha\) với \(\frac{\pi}{2}< \alpha< \pi\). Tính \(\tan2\alpha\)

Bài 7) Cho \(\frac{1}{tan^2\alpha}+\frac{1}{cot^2\alpha}+\frac{1}{sin^2\alpha}+\frac{1}{\cos^2\alpha}=7\). Tính \(\cos4\alpha\)

Bài 8) Chứng minh các biểu thức sau:

a) \(\sin\alpha\left(1+cos2\alpha\right)=sin2\alpha cos\alpha\)

b) \(\frac{1+sin2\alpha-cos2\alpha}{1+sin2\alpha+cos2\alpha}=tan\alpha\)

c) \(tan\alpha-\frac{1}{tan\alpha}=-\frac{2}{tan2\alpha}\)

Bài 9) Chứng minh trong mọi tam giác ABC ta đều có:

a) sinA + sinB + sinC = \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)

b) \(sin^2A+sin^2B+sin^2C=2\left(1+cosAcosBcosC\right)\)

Bài 10) Chứng minh trong mọi tam giác ABC không vuông ta đều có:

a) \(tanA+tanB+tanC=tanAtanBtanC\)

b) \(cotAcotB+cotBcotC+cotCcotA=1\)

Bài 11) Chứng minh trong mọi tam giác ABC ta đều có:

a) \(tan\frac{A}{2}tan\frac{B}{2}+tan\frac{B}{2}tan\frac{C}{2}+tan\frac{C}{2}tan\frac{A}{2}=1\)

b) \(cot\frac{A}{2}+cot\frac{B}{2}+cot\frac{C}{2}=cot\frac{A}{2}cot\frac{B}{2}cot\frac{C}{2}\)

1
30 tháng 4 2019

Help help. Tui thật sự ngu lượng giác huhu

NV
16 tháng 5 2020

\(\pi< a< \frac{3\pi}{2}\Rightarrow2\pi< 2a< 3\pi\Rightarrow sin2a>0\)

\(cot2a=\frac{1}{2}\Rightarrow sin2a=\frac{1}{\sqrt{1+cot^22a}}=\frac{2\sqrt{5}}{5}\)

\(cos\left(a+\frac{\pi}{3}\right)+cos\left(a-\frac{\pi}{3}\right)=2cosa.cos\frac{\pi}{3}=cosa\)

\(tan\left(\frac{\pi}{2}-a\right)+tan\left(\frac{\pi}{2}+\frac{a}{2}\right)=\frac{-sin\frac{a}{2}}{cos\left(\frac{\pi}{2}-a\right).cos\left(\frac{\pi}{2}+\frac{a}{2}\right)}=\frac{sin\frac{a}{2}}{sina.sin\frac{a}{2}}=\frac{1}{sina}\)

\(\Rightarrow M=sina.cosa=\frac{1}{2}sin2a=\frac{\sqrt{5}}{5}=\frac{1}{\sqrt{5}}\)

\(\Rightarrow2a+b=7\)

NV
28 tháng 11 2019

\(\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina\left(1+sina\right)}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)

\(\frac{sin^2a+cos^2a+2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina+cosa}{sina-cosa}=\frac{\frac{sina}{cosa}+1}{\frac{sina}{cosa}-1}=\frac{tana+1}{tana-1}\)

\(\left(sin^2a\right)^3+\left(cos^2a\right)^3=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)

\(=1-3sin^2a.cos^2a\)

\(sin^2a-tan^2a=tan^4a\left(\frac{sin^2a}{tan^4a}-\frac{1}{tan^2a}\right)=tan^4a\left(sin^2a.\frac{cos^2a}{sin^2a}-\frac{1}{tan^2a}\right)\)

\(=tan^4a\left(cos^2a-cot^2a\right)\) bạn ghi sai đề câu này

\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a\left(1+cot^2a\right)-\frac{1}{sina.cosa}+cot^3a\left(1+tan^2a\right)\)

\(=tan^3a+tana-\frac{1}{sina.cosa}+cot^3a+cota\)

\(=tan^3a+cot^3a+\frac{sina}{cosa}+\frac{cosa}{sina}-\frac{1}{sina.cosa}\)

\(=tan^3a+cot^3a+\frac{sin^2a+cos^2a-1}{sina.cosa}=tan^3a+cot^3a\)

NV
28 tháng 4 2020

Mẫn Li

Câu 4 nếu bạn ko đánh sai thì người ghi đề sai :D, tử số phải là sinb chứ ko phải sina (đã chứng minh bên trên)

Câu 2b sửa lại thì cm dễ thôi:

\(\frac{cos\left(a+b\right).cos\left(a-b\right)}{sin^2a.sin^2b}=\frac{\frac{1}{2}cos2a+\frac{1}{2}cos2b}{sin^2a.sin^2b}=\frac{1-sin^2a-sin^2b}{sin^2a.sin^2b}=\frac{1}{sin^2a.sin^2b}-\frac{1}{sin^2a}-\frac{1}{sin^2b}\)

\(=\left(1+cot^2a\right)\left(1+cot^2b\right)-\left(1+cot^2a\right)-\left(1+cot^2b\right)\)

\(=1+cot^2a+cot^2b+cot^2a.cot^2b-2-cot^2a-cot^2b\)

\(=cot^2a.cot^2b-1\)

(từ đầu bằng thứ nhất ra thứ 2 sử dụng ct nhân đôi \(cos2x=1-2sin^2x\))

28 tháng 4 2020

Rất xin lỗi bạn!
Câu 2b do mình đánh sai dấu phải là \(\frac{cos\left(a+b\right)\times cos\left(a-b\right)}{sin^2a\times sin^2b}=cot^2a\times cot^2b-1\)
Câu 3 mình cũng đánh sai luôn:

\(sin\frac{A}{2}=cos\frac{B}{2}\times cos\frac{C}{2}-sin\frac{C}{2}\times sin\frac{B}{2}\)

Còn câu 4 thì mình ko có đánh sai! Thành thật xin lỗi bạn! Mình sẽ khắc phục sự cố này!

AH
Akai Haruma
Giáo viên
14 tháng 4 2019

Lời giải:

\(\sin a=\frac{3}{5}\Rightarrow \cos ^2a=1-\sin ^2a=\frac{16}{25}\)

\(a\in (0; \frac{\pi}{2})\Rightarrow \cos a>0\). Do đó \(\cos a=\frac{4}{5}\).

\(\Rightarrow \tan a=\frac{\sin a}{\cos a}=\frac{3}{5}: \frac{4}{5}=\frac{3}{4}\Rightarrow \cot a=\frac{1}{\tan a}=\frac{4}{3}\)

Như vậy:

\(A=\frac{\cot a+\tan a}{\cot a-\tan a}=\frac{\frac{4}{3}+\frac{3}{4}}{\frac{4}{3}-\frac{3}{4}}=\frac{25}{7}\)