Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x A y B D E C M G a 1 2
Giải:
a) Ta có: AB + BE = AE
AD + DC = AC
Mà AB = AD, BE = DC
\(\Rightarrow AE=AC\) (*)
Xét \(\Delta ABC\) và \(\Delta ADE\) có:
AE = AC ( theo (*) )
\(\widehat{A}\): góc chung
AB = AD ( gt )
\(\Rightarrow\Delta ABC=\Delta ADE\) ( c - g - c )
\(\Rightarrowđpcm\)
b) Gọi G là điểm cắt nhau của đường thẳng a và đoạn thẳng AB
Vì a là đường trung trực của AB nên G là trung điểm của AB và \(\widehat{G_1}=\widehat{G_2}=90^o\)
Xét \(\Delta AMG\) và \(\Delta BMG\) có:
\(AG=GB\left(=\frac{1}{2}AB\right)\)
\(\widehat{G_1}=\widehat{G_2}=90^o\)
MG: cạnh chung
\(\Rightarrow\Delta AMG=\Delta BMG\left(c-g-c\right)\)
\(\Rightarrow MA=MB\) ( cạnh tương ứng )
\(\Rightarrowđpcm\)
phần a) làm giống NGUYỄN HUY TÚ nha; phần b)
Xét tam giác AMI và tam giác BMI có:
AI = BI( vì d là đường trung trực của đoạn thẳng AB)
IM là cạnh chung (gt)
góc AIM = góc BIM ( vì d vuông góc với AB tại I)
=> tam giác AMI= tam giác BMI( c-g-c)
=> AM = BM ( 2 cạnh tương ứng)
Vậy............
Lê Xuân Trường
-Ta có AB=AD , BE=DC nên AB+AE=AD+AC
-Xét tam giác ABC và tam giác ADE có :
AB=AD (GT)
 góc chung
AC=AE (CHỨNG MINH TRÊN)
Suy ra tam giác ABC=tam giác ADE (C.G.C)
A) XÉT \(\Delta ABC\)
CÓ: \(\widehat{A}+\widehat{AB}C+\widehat{ACB}=180^0\)( ĐỊNH LÍ)
THAY SỐ: \(85^0+40^0+\widehat{ACB}=180^0\)
\(\widehat{ACB}=180^0-85^0-40^0\)
\(\widehat{ACB}=55^0\)
\(\Rightarrow\widehat{A}>\widehat{ACB}>\widehat{ABC}(85^0>55^0>40^0)\)
\(\Rightarrow BC>AB>AC\)( ĐỊNH LÍ)
B) TA CÓ: \(\widehat{ABC}+\widehat{CBE}=180^0\)( KỀ BÙ)
THAY SỐ: \(40^0+\widehat{CBE}=180^0\)
\(\widehat{CBE}=180^0-40^0\)
\(\widehat{CBE}=140^0\)
TA CÓ: \(\widehat{BAC}+\widehat{DAC}=180^0\)(KỀ BÙ)
THAY SỐ: \(85^0+\widehat{DAC}=180^0\)
\(\widehat{DAC}=180^0-85^0\)
\(\widehat{DAC}=95^0\)
XÉT \(\Delta CBE\)
CÓ: \(\widehat{CBE}=140^0\)
\(\Rightarrow\widehat{CBE}\)LÀ GÓC LỚN NHẤT ( ĐỊNH LÍ)
MÀ CE LÀ CẠNH ĐỐI DIỆN VỚI \(\widehat{CBE}\)
\(\Rightarrow CE\)LÀ CẠNH LỚN NHẤT ( ĐỊNH LÍ)
\(\Rightarrow CE>CB\)( ĐỊNH LÍ) (1)
XÉT \(\Delta ACD\)
CÓ: AC =AD ( GT)
\(\Rightarrow\Delta ACD\)CÂN TẠI A ( ĐỊNH LÍ)
\(\Rightarrow\widehat{D}=\widehat{ACD}\)( TÍNH CHẤT)
MÀ \(\widehat{D}+\widehat{ACD}+\widehat{CAD}=180^0\)( ĐỊNH LÍ TỔNG 3 GÓC TRONG 1 TAM GIÁC)
\(\Rightarrow\widehat{D}+\widehat{D}+\widehat{CAD}=180^0\)
THAY SỐ: \(2\widehat{D}+95^0=180^0\)
\(\widehat{D}=\left(180^0-95^0\right):2\)
\(\widehat{D}=42,5^0\)
XÉT \(\Delta BCD\)
CÓ: \(\widehat{D}>\widehat{ABC}\left(42,5^0>40^0\right)\)
\(\Rightarrow CB>CD\)(ĐỊNH LÍ) (2)
TỪ (1) ; (2) \(\Rightarrow CE>CB>CD\)
MK KẺ HÌNH XẤU LẮM!! NÊN MK KO KẺ ĐÂU, BN KẺ GIÙM MK NHA!!!!!! THANKS
CHÚC BN HỌC TỐT!!!!!!
A C B M N
Trên tia Ax có: AB = 10cm , AC = 5cm
=> AC < AB
=> Điểm C nằm giữa 2 điểm A và B (1)
Ta có:
AC + CB = AB
=> BC = AB - AC
Thay AB = 10cm, AC = 5cm
=> BC = 10 - 5 (cm )
=> BC = 5 ( cm )
Vì BC = 5cm, AC = 5cm
=> BC = AC (2)
Từ (1) và (2) suy ra:
C là trung điểm của đoạn thẳng AB
b,
Vì M là trung điểm của đoạn thẳng AC
=> CM = AM và M nằm giữa A và C
Thay AC = 5cm
=> CM = 5 : 2 = 2,5 (cm)
Vì N là trung điểm của đoạn thẳng BC
=> NC = NB và N nằm giữa C và B
Thay BC = 5cm
=> NC = 5 : 2 = 2,5 (cm)
Vì M nằm giữa A và C
N nằm giữa C và B
C nằm giữa A và B
Do đó C nằm giữa M và N
Ta có: MC + CN = MN
Thay MC = 2,5 cm, CN = 2,5cm
=> MN = 2,5 + 2,5 = 5 (cm)
Ta có hình vẽ: A x B C M N a/ Ta có: AB = 10 cm; AC = 5 cm
C nằm giữa AB
=> AC + CB = AB
hay 5 cm + CB = 10 cm
=> CB = 5 cm
Ta có: AC = CB = 5cm
=> C là trung điểm đoạn thẳng AB (đpcm)
b/ Ta có: MC + CN = MN
hay \(\frac{1}{2}\)AC + \(\frac{1}{2}\)CB = MN
=> MN = \(\frac{1}{2}\) (AC+CB)
=> MN = \(\frac{1}{2}\)AB
=> MN = \(\frac{1}{2}\).10 = 5 cm
Vậy độ dài đoạn thẳng MN = 5 cm
Bạn tự vẽ hình và viết gt kl nha!
a) Ta có: AE = AB + BE
AC = AD + DC
mà AB = AD
BE = DC
suy ra AE = AC
Xét 2 tam giác ABC và tam giác ADE có:
AE = AC (cmt)
AB = AD (gt)
 là góc chung
suy ra tam giác ABC = tam giác ADE (c-g-c)
b) Bạn tự vẽ hình nha!
Xét 2 tam giác vuông MAI và tam giác MBI có:
AM = MB (gt)
MI là cạnh chung
suy ra tam gics MAI = tam gics MBI (2 cạnh góc vuông)
suy ra MA =MB (2 cạnh tương ứng)
Vậy MA =MB