Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta có:\(a=n^2=153k,1000\le n^2\le9999\)
\(\Leftrightarrow1000\le153k\le9999\)
\(\Rightarrow\frac{1000}{153}\le\frac{153k}{153}\le\frac{9999}{153}\approx6,5\le k\le65,3\)
Thử k= 7;8;9;...;65. Ta thấy: 153.17=\(51^2=2601\)
Vậy số chính phương có 4 chữ số chia hết cho 153 la 2601
a, 3A=3^2+3^3+....+3^2017
2A=3A-A=(3^2+3^3+....+3^2017)-(3+3^2+3^3+....+3^2016) = 3^2017-3
=> A=(3^2017-3)/2
b, Xét 3^2017 = 3.3^2016 = 3.(3^4)^504 = 3.81^504 = 3 . ....1 = ....3
=> A = (....3-3)/2 = ....0/2
=> A có tận cùng là 5 hoặc 0
c, Dễ thấy A chia hết cho số 3 nguyên tố
Vì 3^2;3^3;....;3^2016 đều chia hết cho 3^2=9
mà 3 ko chia hết cho 9 => A ko chia hết cho 9
=> A chia hết cho 3 nguyên tố nhưng A ko chia hết cho A^2
=> A ko phải là số chính phương
k mk nha
Gọi số đó là ab
ta có ab = a.10 + b = 3a + 7b + b
vì 7b chia hết cho 7 => để 3a + 7a + b chia hêt cho 7
=> 3a + b chia hêt cho 7
=> 3a + b + 14b chia hêt cho 7
=> 3a + 15b chia hêt cho 7
=> 3 ( a + 5b ) chia hêt cho 7
mà 3 ko chia hêt cho 7 => a + 5b chia hêt cho 7 ( đpcm )
Gọi số đó là ab (không phải là a.b đâu, đành phải chuyển dấu nhân thành dấu x)
\(ab=a\times10+b=7a+3a+b⋮7\)
\(\Leftrightarrow3a+b⋮7\)
\(\Leftrightarrow3a+b+14b⋮7\)
\(\Leftrightarrow3a+15b⋮7\)
\(\Leftrightarrow3\left(a+5b\right)⋮7\left(1\right)\)
Vì UCLN(3;7) = 1
\(\Rightarrow\left(1\right)\Leftrightarrow a+5b⋮7\)
XONG RỒI ĐÓ BẠN.
Ta có : n2 + 4 ⋮ n + 2
<=> n2 - 4 + 8 ⋮ n + 2
<=> n2 - 22 + 8 ⋮ n + 2
<=> (n - 2)(n + 2) + 8 ⋮ n + 2
=> 8 ⋮ n + 2 Hay n + 2 ∈ Ư(8) = { ± 1; ± 2; ± 4; ± 8 }
=> n + 2 = { ± 1; ± 2; ± 4; ± 8 }
=> n = { - 10; - 6; - 4; - 3; - 1; 0; 2; 6 }
minh moi hoc lop 6
Kiên bạn vừa phải thôi