Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) a2=ac\(\Rightarrow\) \(\frac{a}{b}=\frac{b}{c}\)
c2=bd\(\Rightarrow\) \(\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\)\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) = \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\) = \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
=\(\frac{a.b.c}{b.c.d}=\frac{a}{d}\)
=> đpcm
1) \(\frac{x-y}{x+y}=\frac{z-x}{z+x}\)
\(\Leftrightarrow\left(x-y\right)\left(z+x\right)=\left(z-x\right)\left(x+y\right)\)
\(\Leftrightarrow z\left(x-y\right)+x\left(x-y\right)=x\left(z-x\right)+y\left(z-x\right)\)
\(\Leftrightarrow xz-zy+x^2-xy=xz-x^2+yz-xy\)
\(\Leftrightarrow-zy+x^2=-x^2+yz\)
\(\Leftrightarrow-2x^2=-2zy\)
\(\Leftrightarrow x^2=yz\)(đpcm)
a, Có: \(\frac{a}{c}=\frac{c}{b}=\frac{b}{d}=k\Rightarrow k^3=\frac{a}{c}.\frac{c}{b}.\frac{b}{d}=\frac{a^3}{c^3}=\frac{c^3}{b^3}=\frac{b^3}{d^3}=\frac{a^3+c^3-b^3}{c^3+b^3-d^3}=\frac{a}{d}\left(ĐPCM\right)\)
b, Thấy: I y-3 I \(\ge\)0 => VT\(\le\)42 => VP \(\le\)42
=> \(4\left(2012-x\right)^4\le42\Leftrightarrow\left(2012-x\right)^4\le10.5\)
Mặt khác với \(\forall y\in Z,\)VT \(⋮\)3
=> VP \(⋮\)3 <=> VP=0 hay x=2012
khi đó: VT=42-3I y-3I =0 <=> Iy-3I=14 <=> \(\orbr{\begin{cases}y-3=-14\\y-3=14\end{cases}\Leftrightarrow\orbr{\begin{cases}y=-11\\y=17\end{cases}}}\)
Vậy nghiệm thỏa mãn là: (x,y)=(2012,-11), (2012, 17)
a) Sửa đề CMR : \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
=> \(\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(\text{vì }\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\right)\)
=> \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(\text{đpcm}\right)\)
b) |17x - 5| - |17x + 5| = 0
=> |17x - 5| = |17x + 5|
=> \(\orbr{\begin{cases}17x-5=17x+5\\17x-5=-17x-5\end{cases}}\Rightarrow\orbr{\begin{cases}0x=10\\34x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\in\varnothing\\x=0\end{cases}}\Rightarrow x=0\)
Vậy x = 0 là giá trị cần tìm