\(\in\) N. Chứng minh: a + 4b chia hết cho 13 \(\Leftrig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3,

b, Có : abcd = 100ab + cd

= 100.2.cd + cd

= 200cd + cd

= ( 200 + 1 ). cd

= 201. cd

= 3.67 + cd

suy ra abcd chia hết cho 67.

a, Có : abc = abc0

abc0 = 1000a + bc0

= 999a + a + bc0

= 999a + bca

= 27.37a + bca

Có : abc chia hết cho 27 suy ra abc0 chia hết cho 27

suy ra 27. 37a + bca chia hết cho 27

suy ra bca chia hết cho 27.

21 tháng 12 2014

a + 4b chia hết 13 => 10 ( a + 4b ) cũng chia hết 13

mà 10( a + 4b ) = 10a + 40b = 10a + b + 39b

xét tổng trên thấy 39b chia hết 13 => 10a + b chia hết 13 ( đpcm )

24 tháng 12 2014

a + 4b chia hết cho 13 => 3(a + 4b) chia hết cho 13

Ta có: 3(a + 4b) + (10a + b) = 3a + 12b + 10a + b = 13a + 13b = 13(a + b) chia hết cho 13

Mà 3(a + 4b) chia hết cho 13 nên 10a + b chia hết cho 13

16 tháng 12 2018

\(Taco:\hept{\begin{cases}a+4b⋮13\\13a+13b⋮13\end{cases}}\Rightarrow13a+13b-3\left(a+4b\right)⋮13\Rightarrow10a+b⋮13\)

26 tháng 10 2017

vì 39 chia hết cho 13 suy ra 39a chia hết cho 13

mà a+4b chia hết cho 13 nên 39a+a+ab chia hết cho 13

suy ra 40a+4b chia hết cho 13 nên 4(10a+b) chia hết cho 13 (1)

vì 4 ko chia hết cho 13 nên kết hợp với (1) ta có 10a+b chia hết cho 13

k cho mik nha

1 tháng 3 2018

mình ghi lại đề nhé

Chứng tỏ rằng :

a, 1028 + 8  chia hết cho 72

b, 8+ 220 chia hết cho 17

c, 10n + 18n - 1 chia hết cho 27

d, 10n +72n - 1 chia hết cho 81

1 tháng 3 2018

a) 1028 = (2.5)28 = 228.528 => 1028 chia hết cho 23 hay 1028 chia hết cho 8 => 1028 + 8 chia hết cho 8

Mà 1028 + 8 = 1000...08 có tổng các chữ số bằng 9 => 1028 + 8 chia hết cho 9 

=> 1028 + 8 chia hết cho 8.9 = 72

b) 8+ 220 = (23)+ 220 = 224 + 220 = 220.(2+ 1) = 220.17 chia hết cho 17 => 8+ 220 chia hết cho 17

c) 10+ 18n - 1 = (10- 1) - 9n + 27n = 999...9 - 9n + 27n (Có n chữ số 9)

= 9.111...1 - 9n + 27n   (Có n chữ số 1)

= 9.(111...1 - n) + 27n

Nhận xét: 111...1 có tổng các chữ số là 1+ 1 + 1+ ..+ 1 = n => 111...1 - n chia hết cho 3

=> 9.(111...1 - n) chia hết cho 9.3 = 27

Mà 27n chia hết cho 27

Nên 9.(111...1 - n) + 27n chia hết cho 27

Vậy....

d) 10+ 72n - 1 = (10- 1) - 9n + 81n = 99...9 - 9n + 81n  (Có n chữ số 9)

= 9.(11..1 - n) + 81n

Nhận  xét: 111...1 có tổng các chữ số là n => 111...1 - n chia hết cho 9 

=> 9.(11...1 - n) chia hết cho 9.9 = 81

Mà 81n chia hết cho 81

Nên 9.(11..1 - n) + 81n chia hết cho 81

Vậy...

19 tháng 7 2017

1)

\(A=156+273+533+y\)

\(A=962+y\)

\(962⋮13\)

Để \(A⋮13\rightarrow y⋮13\)

\(A⋮̸13\rightarrow y⋮̸13\)

2)

\(A=1+3+3^2+...+3^{11}\)

* để A chia hết cho 13:

\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)

\(A=1\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)

\(A=\left(1+3^3+...+3^9\right)\left(1+3+3^2\right)\)

\(A=13\left(1+3^3+3^9\right)⋮13\rightarrowđpcm\)

* để A chia hết cho 40:

\(A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)\(A=\left(1+3^4+...+3^8\right)\left(1+3+3^2+3^3\right)\)

\(A=40\left(1+3^4+...+3^8\right)⋮40\rightarrowđpcm\)

3)

\(25^{24}-25^{23}\)

\(=25^{23}.25-25^{23}.1\)

\(=25^{23}.\left(25-1\right)\)

\(=25^{23}.24\)

\(=25^{23}.4.6⋮6\rightarrowđpcm\)

4) Gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2;a+3;a+4

Tích của 5 số tự nhiên liên tiếp là :

\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\)

Ta có: \(a+1;a+3\) hoặc \(a+2;a+4\)là 2 số chẵn liên tiếp nên sẽ chia hết cho 8

5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5

a;a+1;a+2 luôn sẽ có 1 số chia hết cho 3

5 số tự nhiên liên tiếp đó chia hết cho 3;5;8

\(\Rightarrow⋮120\rightarrowđpcm\)

18 tháng 7 2017

khó quábucminhkhocroi

26 tháng 12 2017

1. \(A=2^{2016}-1\)

\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

16 chia 5 dư 1 nên 16^504 chia 5 dư 1

=> 16^504-1 chia hết cho 5

hay A chia hết cho 5

\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

lý luận TT trg hợp A chia hết cho 5

(3;5;7)=1 = > A chia hết cho 105

2;3;4 TT ạ !!