Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CTV mới được làm à :V
Đặt \(x=\frac{a}{b-c}\) ; \(y=\frac{b}{c-a}\) ; \(z=\frac{c}{a-b}\)
Ta có : \(\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(=\left(x-1\right)\left(y-1\right)\left(z-1\right)\left(=\frac{2abc}{\left(b-c\right)\left(c-a\right)\left(a-b\right)}\right)\)
\(\Rightarrow xyz+zy+yz+zx+z+y+z+1\)
\(=xyz-\left(xy+yz+zx\right)+x+y+z-1\)
\(\Rightarrow2\left(xy+yz+zx\right)=-2\)
\(\Rightarrow xy+yz+zx=-1\)
Vậy ................
Mình làm theo cô hướng dẫn sai thì thôi nha .
Lời giải:
$M=\frac{-ab(a-b)}{(a-b)(b-c)(c-a)}+\frac{-bc(b-c)}{(a-b)(b-c)(c-a)}+\frac{-ca(c-a)}{(a-b)(b-c)(c-a)}$
$=\frac{-[ab(a-b)+bc(b-c)+ca(c-a)]}{(a-b)(b-c)(c-a)}$
$=\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1$
1) \(M=a^2b^2c^2\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
Em chú ý bài toán sau nhé: Nếu a+b+c=0 <=> \(a^3+b^3+c^3=3abc\)
CM: có:a+b=-c <=> \(\left(a+b\right)^3=-c^3\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
Chú ý: a+b=-c nên \(a^3+b^3+c^3=3abc\)
Do \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)
Thay vào biểu thwusc M ta được M=3abc (ĐPCM)
2, em có thể tham khảo trong sách Nâng cao phát triển toán 8 nhé, anh nhớ không nhầm thì bài này trong đó
Nếu không thấy thì em có thể quy đồng lên mà rút gọn
với ab+bc+ca=1
=>\(a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
tương tự mấy cái kia rồi thay vào, ta có
A=\(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}=1\)
b),ta có \(a^2+2bc-1=a^2+bc-ab-ac=\left(a-b\right)\left(a-c\right)\)
tương tự mấy cái kia, rồi thay váo, ta có
\(B=\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}=1\)
^_^
Ta có: MS = (1+a2).(1+b2).(1+c2)
= (ab + ac + bc + a2).(ab + ac + bc + b2).(ab + bc + ac + c2)
= [ (a2 + ac) + (ab + bc) ] . [ (ab + b2) + (ac + bc) ] . [ (ab + bc) + (ac + c2) ]
= [ a(a + c) + b(a + c) ] . [ b(a + b) + c(a + b) ] . [ b(a + c) + c(a + c) ]
= (a + b)(a + c)(b + c)(a + b)(b + c)(a + c)
= (a + b)2(b + c)2(a + c)2 = TS
Vậy A = 1
\(a,\) Ta có: \(S=\frac{ab\left(a-b\right)-bc\left(c-b\right)+ac\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
Xét tử thức ta có: \(ab\left(a-b\right)-bc\left(c-b\right)+ac\left(c-a\right)\)
\(=ab\left(a-b\right)-bc\left[\left(c-a\right)+\left(a-b\right)\right]+ac\left(c-a\right)\)
\(=ab\left(a-b\right)-bc\left(c-a\right)-bc\left(a-b\right)+ac\left(c-a\right)\)
\(=-b\left(a-b\right)\left(c-a\right)+c\left(a-b\right)\left(c-a\right)\)
\(=\left(a-b\right)\left(c-b\right)\left(c-a\right)\)
\(=-\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
Vậy \(S=\frac{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-1\)
Vậy .......
\(b,a^4+3\ge4a\)
\(\Leftrightarrow a^4-2a^2+1+2a^2-4a+2\ge0\)
\(\Leftrightarrow\left(a^2-1\right)^2+2\left(a-1\right)^2\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left[\left(a+1\right)^2+2\right]\ge0\left(Luôn-đúng-\forall a\right)\)
Dấu " = " xảy ra \(\Leftrightarrow a=1\)