Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x = 0, ta có:
02016. f(0-2016) = (0 - 2017) . f(0)
=> 0. f(-2016) = - 2017. f(0)
=> 0 = - 2017. f(0) => f(0) = 0 (1)
Với x = 2017, ta có:
20172016 . f(2017 - 2016) = (2017 -2017) . f(2017)
=> 20172016 . f(1) = 0. f(2017)
=>20172016 . f(1) = 0 => f(1) = 0 (2)
(1), (2) => (đpcm)
a) Ta có: \(f\left(\frac{1}{3}\right)=\frac{1}{3}+\frac{1^2}{3^2}+\frac{1^3}{3^3}+....+\frac{1^{2016}}{3^{2016}}\)
\(\Rightarrow3.f\left(\frac{1}{3}\right)=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2015}}\)
\(\Rightarrow3.f\left(\frac{1}{3}\right)-f\left(\frac{1}{3}\right)=\left(1+\frac{1}{3}+...+\frac{1}{3^{2015}}\right)\)\(-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\right)\)
\(\Rightarrow2.f\left(\frac{1}{3}\right)=1-\frac{1}{3^{2016}}\)
\(\Rightarrow f\left(\frac{1}{3}\right)=\frac{1-\frac{1}{3^{2016}}}{2}\)
Ta có:
f ( 1 ) = \(a_0+a_1+....+a_{2017}\)
mà f ( x) = \(\left(x+2\right)^{2017}\)
=> \(S=f\left(1\right)=3^{2017}\)