Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải của mình đây
https://www.facebook.com/phanthanhnhan.bkit/posts/812554928885882
B.C=595 => B hoặc C có số tận cùng bằng 5 => B hoặc C sẽ là +/-15, +/-25, +/-35, +/-45, +/-55
Nhưng 595 chỉ chia hết cho +/- 35 => B hoặc C là số +/-35
Mặt khác C.D = 476 => C và D số tận cùng không phải là số 5 => C có số tận cùng không phải 5
=> B = +/-35
=>A2 + B2 + C2 + D2 =2659
Nếu a > 2 thì a là số nguyên tố lẻ => a + b hoặc a + c là số chẵn (vì b và c là các số nguyên tố khác nhau => b hoặc c phải lẻ, tổng hai số lẻ a + b hoặc a + c là số chẵn) => c hoặc d là số chẵn => vô lý vì c và d cũng là số nguyên tố.
Vậy a = 2.
=> 22 . 10 + b2 = d2
=> d2 - b2 = 40
=> (d - b)(d + b) = 40 (1)
Ta lại có: (vì a = 2)
2 + b = c
2 + c = d
=> d = 2 + c = 2 + (2 + b) = 4 + b
Thay vào (1) ta có: 4. (4 +2b) = 40
=> b = 3
=> d = 4 + b = 7
=> c = a + b = 2 + 3 =5
vậy: a = 2; b= 3; c = 5; d = 7
\(a^2+d^2-c^2-b^2=\left(a+d\right)^2-2ad-\left(b+c\right)^2+2bc=0\)
\(\left(a+b+c+d\right)\left(a+d-b-c\right)=2\left(ad-bc\right)\)
a+b+c+d+(a+d-b-c)=2(a+d) chẵn
suy ra a+b+c+d và a+d-b-c cùng chẵn hoặc cùng lẻ
\(a+b+c+d\ge4\)vì \(a\ge1\);\(b\ge1\);\(c\ge1\);\(d\ge1\)
a+b+c+d lại chia hết cho 2 nên a+b+c+d là hợp số
nếu cùng lẻ thì lại ko có số nào chia hết cho 2 nên ad-bc=0 và a+d-b-c=0( phương pháp đồng nhất hệ số)
ad=bc suy ra
a+d=b+c
suy ra a+d+b+c=a+d+(b+c)=a+d+a+d=2(a+d) chia hết cho 2
Vậy a+b+c+d luôn là hợp số
P/S: chả biết đúng không nữa
Theo hằng đẳng thức
\(a^2+b^2=\left(a+b\right)^2-2ab;\)
\(c^2+d^2=\left(c+d\right)^2-2cd\)
\(\Rightarrow\)
\(a^2+b^2\)và \(a+b\) cùng chẵn, hoặc cùng lẻ;
\(c^2+d^2\) và \(c+d\)cùng chẵn hoặc cùng lẻ. Kết hợp với
\(a^2+b^2=c^2+d^2\Rightarrow a+b\) và \(c+d\) cùng chẵn hoặc cùng lẻ
Từ đó \(a+b+c+d\)chẵn, và vì \(a+b+c+d\ge4\)
nên \(a+b+c+d\) là hợp số.
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
Ta có:
a^2+b^2=c^2+d^2 => a^2+b^2+c^2+d^2=2.(a^2+b^2)
=>a^2+b^2+c^2+d^2 chia hết cho 2 (1)
Lại có: a^2+b^2+c^2+d^2 - (a+b+c+d) = (a^2-a) + (b^2-b) + (c^2-c) + (d^2 - d)
= a.(a-1) + b.(b-1)+c.(c-1)+d.(d-1)
Do a.(a-1), b.(b-1), c,(c-1), d.(d-1) là các tích của 2 Số liên tiếp
=> 4 tích a.(a-1), b.(b-1), c,(c-1), d.(d-1) đều chia hết cho 2
=>a.(a-1) + b.(b-1)+c.(c-1)+d.(d-1) chia hết cho 2 <=> a^2+b^2+c^2+d^2 - (a+b+c+d) chia hết cho 2 (2)
Từ (1) và (2) có: a+b+c+d chia hết cho 2
Mà a,b,c,d là các số nguyên dương => a+b+c+d >2
Vậy a+b+c+d là hợp số
Ta có: a\(^2\)+b\(^2\)+c\(^2\)+d\(^2\)-(a+b+c+d)
= a(a-1)+b(b-1)+c(c-1)+d(d-1)
Vì a,b,c,d nguyên dương nên a(a-1), b(b-1), c(c-1), d(d-1) là các số nguyên dương liên tiếp
=> a(a-1),b(b-1),c(c-1),d(d-1) chia hết cho 2
=> a(a-1)+b(b-1)+c(c-1)+d(d-1) chia hết cho 2
Hay a\(^2\)+b\(^2\)+c\(^2\)+d\(^2\)-(a+b+c+d) chia hết cho 2
<=> 2( a\(^2\)+b\(^2\)) - (a+b+c+d) chia hết cho 2 (Vì a\(^2\)+b\(^2\)=c\(^2\)+d\(^2\))
Vì 2( a\(^2\)+b\(^2\)) chia hết cho 2, a\(^2\)+b\(^2\)+c\(^2\)+d\(^2\)-(a+b+c+d) chia hết cho 2
=> a+b+c+d chia hết cho 2=> a+b+c+d là số chẵn
Lại có: a+b+c+d ≥ 4 (a,b,c,d nguyên dương)
Do đó a+b+c+d là hợp số, đccm. (Vì là số chẵn và lớn hơn 4).