Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Leftrightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
Từ \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}\Rightarrow\frac{1}{a}=\frac{1}{c}\)
Tương tự suy ra \(\frac{1}{c}=\frac{1}{b};\frac{1}{b}=\frac{1}{a}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Ta có \(ab^2+bc^2+ca^2=a^3+b^3+c^3\)(đccm)
\(\text{Một cách khác}\)
\(\text{Ta có:}\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}\)
\(\Leftrightarrow ab\left(b+c\right)=bc\left(a+b\right)\)
\(\Leftrightarrow ab^2+abc=abc+b^2c\)
\(\Leftrightarrow a=c\left(1\right)\)
\(\frac{bc}{b+c}=\frac{ca}{a+c}\)
\(\Rightarrow bc\left(a+c\right)=ca\left(b+c\right)\)
\(\Rightarrow abc+bc^2=abc+c^2a\)
\(\Rightarrow b=a\left(2\right)\)
\(Từ\)\(\text{(1) và (2)}\)\(\Rightarrow a=b=c\)
\(\text{Ta có :}\)\(ab^2+bc^2+ca^2=a^3+b^3+c^3\)
\(\frac{a.b}{a+b}=\frac{b.c}{b+c}=\frac{c.a}{c+a}\)
\(\Rightarrow\frac{a+b}{a.b}=\frac{b+c}{b.c}=\frac{c+a}{c.a}\) (vì a;b;c khác 0)
\(=\frac{a}{a.b}+\frac{b}{a.b}=\frac{b}{b.c}+\frac{c}{b.c}=\frac{c}{c.a}+\frac{a}{c.a}\)
\(=\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
=> a = b = c
\(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a.a^2+a.a^2+a.a^2}{a^3+a^3+a^3}=\frac{a^3+a^3+a^3}{a^3+a^3+a^3}=1\)
Ta có : \(2\left(a^3+b^3+c^3-3abc\right)=2\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2ac-2bc\right)\)
\(=\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\) (đpcm)
Ta có : 2 ( a^3 + b^3 + c^3 - 3abc ) = 2 ( a + b + c ) ( a^2 + b^2 + c^2 - ab - ac - bc )
= ( a + b + c ) ( 2a^2 + 2b^2 + 2c^2 - 2ab - 2ac - 2 bc )
= ( a + b + c ) [ ( a - b )^2 + ( b-c )^2 + ( c - a )^2 ] ( đpcm )
cho 3 số a, b, c hác 0 thỏa mãn ab/ (a+b) = bc/ (b+c) = ca/ (c+a)
Tính M = ab + bc + ca/ a2 + b2 + c2
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính M = ab + bc + ca/ a2 + b2 + c2
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}=\frac{1}{c}\\\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\Rightarrow\frac{1}{b}=\frac{1}{a}\\\frac{1}{a}+\frac{1}{c}=\frac{1}{b}+\frac{1}{a}=\frac{1}{c}=\frac{1}{a}\end{cases}}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
\(\Rightarrow M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{1.1+1.1+1.1}{1^2+1^2+1^2}=\frac{3}{3}=1\)
Ta có \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Mà \(a,b,c \ne0\) => \(ab,bc,ca \ne0\)
=> \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
=> \(\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}=\frac{c}{ca}+\frac{a}{ca}\)
=> \(\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)
=> \(a=b=c\)
Thay vào M ta có : \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a.a+a.a+a.a}{a^2+a^2+a^2}=\frac{3a^2}{3a^2}=1\)
Vậy \(M=1\)
ta có:1/2(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]
=1/2(a+b+c)[a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2]
=1/2(a+b+c)[2(a^2+b^2+c^2)-2(ab+bc+ca)]
=1/2(a+b+c)2(a^2+b^2+c^2-ab-bc-ca)
=(a+b+c)[(a^2+b^2+c^2)-(ab+bc+ca)]
=(a+b+c)(a^2+b^2+c^2)-(a+b+c)(ab+bc+ca)
=a^3+ab^2+ac^2+ba^2+b^3+bc^2+ca^2+cb^2+c^3-a^2b-abc-a^2c-ab^2-cb^2-abc-abc-bc^2-ac^2
= a^3+b^3+c^3-3abc (đpcm)
Yêu cầu là j?