Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
j. x.623-x.123=1000
x.(623-123)=1000
x. 500 =1000
x= 1000/500=2
g. 3257+25286:x=3304
25286:x=3304-3257
25286:x=47
x=25286:47
x=538
h.15892:x.96=5568
15892:x=5568:96
15892:x=58
x= 15892:58
x=274
l.53,2:(x-3,5)+45,8=99
53,2:(x-3,5)=99-45,8
53,2:(x-3,5)=53,2
x-3,5=53,2:53,2
x-3,5=1
x=1+3,5
x=4,5
j. x.623-x.123=1000
x.(623-123) =1000
x.500 =1000
x =1000:500
x =2
g. 3257+25286:x =3304
25286;x = 3304 - 3257
25286;x = 47
x = 25286; 47
x = 538
h. 15892 ; x. 96= 5568
15892:x = 5568:96
15892;x = 58
x = 15892;58
x
\(17.8+51.4=34.4+51.4=4\left(51+34\right)=4.84=336\) \(2.2.3.5.19=\left(2.5\right).\left(3.19\right).2=10.2.57=570.2=1140\) \(54.275+825.15+275=54.275+45.275+275=275\left(54+45+1\right)=100.275=27500\) \(\frac{167.198+98}{198.168-100}=\frac{167.198+98}{198.167+198-100}=\frac{167.198+98}{167.198+98}=1\)
\(\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n\left(n+k\right)}\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{2020}=1-\frac{1}{2020}=\frac{2019}{2020}\)
a) 17 x 8 + 51 x 4
= 17 x 4 x 2 + 17 x 3 x 4
= 17 x 4 x ( 2 + 3 )
= 14 x 4 x 5
= 14 x 20
= 280
b) 2 x 2 x 3 x 5 x 19
= ( 2 x 5 ) x ( 3 x 19 ) x 2
= 10 x 57 x 2
= 570 x 2
= 1140
c) 54 x 275 + 825 x 15 + 275
= 54 x 275 + 275 x 3 x 15 + 275 x 1
= 54 x 275 + 275 x 45 + 275 x 1
= 275 x ( 54 + 45 + 1 )
= 275 x 100
= 27500
d) 100 - 99 + 98 - 97 + 96 - 95 + 94 - 93 + ... + 4 - 3 + 2
= (100 - 99) + (98 - 97) + (96 - 95) + (94 - 93) + ... + (4 - 3) + 2
= (1 + 1 + ... + 1) + 2
( 49 số 1 )
= 49 + 2
= 51
k) 1,5 + 2,5 + 3,5 + 4,5 + 5,5 + 6,5 + 7,5 + 8,5
= ( 1,5 + 8,5 ) + ( 2,5 + 7,5 ) + ( 3,5 + 6,5 ) + ( 4,5 + 5,5 )
= 10 + 10 + 10 + 10
= 40
a) \(x+\left(-7\right)=-20\)
\(\Rightarrow x=-20+7\)
\(\Rightarrow x=-13\)
Vậy \(x=-13\)
b) \(8-x=-12\)
\(\Rightarrow x=8-\left(-12\right)\)
\(\Rightarrow x=20\)
Vậy \(x=20\)
c) \(|x|-7=-6\)
\(\Rightarrow|x|=-6+7\)
\(\Rightarrow|x|=1\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy \(x\in\left\{1;-1\right\}\)
d) \(5^2.2^2-7.|x|=65\)
\(\Rightarrow\left(5.2\right)^2-7.|x|=65\)
\(\Rightarrow10^2-7.|x|=65\)
\(\Rightarrow100-7.|x|=65\)
\(\Rightarrow7.|x|=35\)
\(\Rightarrow|x|=5\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
Vậy \(x\in\left\{5;-5\right\}\)
e) \(37-3.|x|=2^3-4\)
\(\Rightarrow37-3.|x|=8-4\)
\(\Rightarrow37-3.|x|=4\)
\(\Rightarrow3.|x|=33\)
\(\Rightarrow|x|=11\)
\(\Rightarrow\orbr{\begin{cases}x=11\\x=-11\end{cases}}\)
Vậy \(x\in\left\{11;-11\right\}\)
f) \(|x|+|-5|=|-37|\)
\(\Rightarrow|x|+5=37\)
\(\Rightarrow|x|=32\)
\(\Rightarrow\orbr{\begin{cases}x=32\\x=-32\end{cases}}\)
Vậy \(x\in\left\{32;-32\right\}\)
g)\(5.|x+9|=40\)
\(\Rightarrow|x+9|=8\)
\(\Rightarrow\orbr{\begin{cases}x+9=8\\x+9=-8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\x=-17\end{cases}}\)
Vậy \(x\in\left\{-1;-17\right\}\)
h) \(-\frac{5}{6}+\frac{8}{3}+\frac{-29}{6}\le x\le\frac{-1}{2}+2+\frac{5}{2}\)
\(\Rightarrow\frac{-5}{6}+\frac{16}{6}+\frac{-29}{6}\le x\le\frac{-1}{2}+\frac{4}{2}+\frac{5}{2}\)
\(\Rightarrow-3\le x\le4\)
Vậy \(-3\le x\le4\)
1990.1990-1992.1998
=1990.1990-(1990+2).1998
=1990.1990-1990.1998+2.1998
=1990.(1990-1998)+2.1998
=1990.(-8)+2.1998
=1990.(-8)+2.(1990+8)
=1990.(-8)+2.1990+16
=1990.{(-8)+2}+16
=1990.(-6)+2.8
=(-1990).3.2+2.8
=-5970.2+2.8
=2.{(-5970)+8}
=2.-5962
=−11924
Bài 1:
a.1990.1990-1992.1988
Gọi 1990 là a ta có:
1992=a+2
1988=a-2
\(\Rightarrow A=a^2-\left(a+2\right)\left(a-2\right)\)
\(\Rightarrow A=a^2-a^2-2a+2a-4\)
\(\Rightarrow A=-4\)
b.\(\frac{1374.57+1374.34}{26.13+74.13+74}=\frac{1374.91}{1374}=91\)
a, 1990 . 1990 - 1982 . 1998
= ( 1982 + 8 ) . 1990 - 1982 . ( 1990 + 8 )
= 1982 .1990 + 8 .1990 - ( 1982 . 1990 + 8 . 1982 )
= 1982 . 1990 + 8 .1990 - 1982 . 1990 - 8 . 1982
= ( 1982 .1990 - 1982 . 1990 ) + ( 8 . 1990 - 8 . 1982 )
= 8 . ( 1990 - 1982 )
= 8 . 8
= 64
Mình sửa đề bài chút xíu nha 1992 thành 1982
a) Ta có: \(\frac{x+1}{3}=\frac{2}{6}\)
⇔\(x=\frac{2\cdot3}{6}-1=\frac{6}{6}-1=1-1=0\)
Vậy: x=0
b) Ta có: \(\frac{x-1}{4}=\frac{1}{-2}\)
⇔\(x=\frac{1\cdot4}{-2}+1=\frac{4}{-2}+1=-1\)
Vậy: x=-1
c) Ta có: \(\frac{-1}{6}=\frac{3}{2x}\)
⇔\(2x=\frac{3\cdot6}{-1}=-18\)
hay x=-9
Vậy: x=-9
d) Ta có: \(\frac{x+1}{3}=\frac{3}{x+1}\)
⇔\(\left(x+1\right)^2=9\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
Vậy: x∈{2;-4}
e) Ta có: \(\frac{4}{5}=\frac{-12}{9-x}\)
⇔\(9-x=\frac{-12\cdot5}{4}=-15\)
hay x=24
Vậy: x=24
f) Ta có: \(\frac{x-1}{-4}=\frac{-4}{x-1}\)
⇔\(\left(x-1\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)
Vậy: x∈{5;-3}
g) Ta có: \(\frac{5-x}{2}=\frac{2}{5-x}\)
⇔\(\left(5-x\right)^2=4\)
⇔\(\left[{}\begin{matrix}5-x=2\\5-x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=7\end{matrix}\right.\)
Vậy: x∈{3;7}
h) Ta có: \(\frac{4-x}{-5}=\frac{-5}{4-x}\)
⇔\(\left(4-x\right)^2=25\)
⇔\(\left[{}\begin{matrix}4-x=5\\4-x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\)
Vậy: x∈{-1;9}
Bài 3:
a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
3A = \(1-\frac{1}{2^6}\)
=> 3A < 1
=> A < \(\frac{1}{3}\)(đpcm)
b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)
4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)
4B = \(3-\frac{1}{3^{99}}\)
=> 4B < 3
=> B < \(\frac{3}{4}\) (2)
Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)
Cho từng bài thôi đỡ nhọc
nhìu quá bạn ơi