Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a) sai đề phải không là (8^8+2^20) chứ?
a) 8^8+2^20=(2^3)^8+2^20=2^24+2^20=2^20*(2^4+1)=2^20*17 chia hết cho 17(đpcm)
b) A=2+2^2+2^3+...+2^60
A=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
A=2(1+2)+2^3(1+2)+...+2^59(1+2)
A=2*3+2^3*3+...+2^59*3
A=3(2+2^3+...+2^59) chia hết cho 3
Vì 3 chia hết cho 3 => 3(2+2^3+...+2^59)
Vậy A chia hết cho 3 (đpcm)
Các câu khác làm tương tự
a: \(=2^{24}+2^{60}=2^{24}\left(1+2^{36}\right)\)
\(=2^{24}\cdot\left(2^4+1\right)\cdot A=2^{24}\cdot17\cdot A⋮17\)
b: \(A=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)\) chia hết cho 3;5;15
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
Bài 1:
a: \(=2^{24}+2^{60}=2^{24}\left(2^{36}+1\right)\)
\(=2^{24}\left(2^4+1\right)\cdot A=17\cdot B⋮17\)
b: \(A=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\cdot\left(2+2^5+...+2^{57}\right)\) chia hết cho 3;5;15
\(A=2\left(1+2+2^2+...+2^{59}\right)⋮2\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
Bài 1 :
a) \(\left(2^{17}+17^2\right).\left(9^{15}-3^{15}\right).\left(2^4-4^2\right)\)
\(=\left(2^{17}+17^2\right).\left(9^{15}-3^{15}\right).\left(16-16\right)\)
\(=\left(2^{17}+17^2\right).\left(9^{15}-3^{15}\right).0\)
\(=0\)
câu b sai đề rồi bạn , mình sủa lại đề nha :
b) \(\left(8^{2017}-8^{2015}\right)\div\left(8^{2014}.8\right)\)
\(=\left(8^{2017}-8^{2015}\right)\div8^{2015}\)
\(=8^{2017}\div8^{2015}-8^{2015}\div8^{2015}\)
\(=8^2-1\)
\(=64-1\)
\(=63\)
c) \(\left(1^3+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left(3^8-81^2\right)\)
\(=\left(1^3+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left[3^8.\left(3^4\right)^2\right]\)
\(=\left(1^3+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).\left[3^8-3^8\right]\)
\(=\left(1^3+2^3+3^4+4^5\right).\left(1^3+2^3+3^3+4^3\right).0\)
\(=0\)
d) \(\left(2^8+8^3\right)\div\left(2^5.2^3\right)\)
\(=\left[2^8+\left(2^3\right)^3\right]\div2^8\)
\(=\left[2^8+2^9\right]\div2^8\)
\(=2^8\div2^8+2^9\div2^8\)
\(=1+2\)
\(=3\)
Bài 2 :
a) \(125^5\div25^3=\left(5^3\right)^5\div\left(5^2\right)^3=5^{15}\div5^6=5^9\)
b) \(27^6\div9^3=\left(3^3\right)^6\div\left(3^2\right)^3=3^{18}\div3^6=3^{12}\)
c) \(4^{20}\div2^{15}=\left(2^2\right)^{20}\div2^{15}=2^{40}\div2^{15}=2^{25}\)
d) \(24^n\div2^{2n}=24^n\div4^n=6^n\)
A, B, C,... là tên của bài bạn nha
VD: A, 15+x=15
B, 16+14+14+14
gọi 22 + 23 + 24 + ....+ 220 là B
=> A=4+B
2B=23+24+25+...+221
2B-B=(23+24+25+...+221)-(22 + 23 + 24 + ....+ 220)
B=221-22
A=4+B
=>A=4+221-22
=>A=22+221-22
=>A=221
Bài 1 : Chứng minh rằng A là một lũy thừa của 2 , với
A = 4 + 22 + 23 + 24 + ....+ 220
A = 4 + (22 + 23 + 24 + ....+ 220 )
A - 4 = 22 + 23 + 24 + ....+ 220
2(A -4) = 23 + 24 + ....+ 221
A - 4 = 2.(A-4) - (A - 4) = ( 23 + 24 + ....+ 221 ) + (22 + 23 + 24 + ....+ 220 )
A - 4 = (23 - 23) + (24 - 24)+ ....+ ( 220 - 220)+(221- 22 )
A - 4 = 221 - 4
A =221 - 4 + 4
A = 221
Vậy A là 1 lũy thừa của 2
Bài 2 : Chứng tỏ rằng
a) 1028 + 8 chia hết cho 72
Ta có:
1000 chia hết cho 8 = 103 chia hết cho 8
=;1025.103 chia hết cho 8
và 8 chia hết cho 8
=1028+8 chia hết cho 8 (1)
Lại có 1028+8= 1000....08(27 CS 0)
=1028+8 chia hết cho 9 (2)
Lại vì ƯCLN (8;9)=1 (3)
Từ (1);(2);(3)=1028+8 chia hết cho 72 => đpcm
b) 88 + 220 chia hết cho 17
Ta có : 88= (82)4= ...64
220= (22)10= ...4
Vậy ...64 + ...4 = ...68
Vì ...68 : 17 = 4 =>( đpcm)
Chúc bạn học tốt !
a: \(=\left(2^{24}+2^{60}\right)\)
\(=2^{24}\left(2^{36}+1\right)\)
\(=2^{24}\cdot\left(2^4+1\right)\cdot A=17\cdot B⋮17\)
b: \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(B=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
=15(2+...+2^57) chia hết cho 3;15
=30(1+...+2^56) chia hết cho 2