K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2021

a, 6100 - 1 = (6 . 6 . 6 ..... 6) - 1 = [(...6) . (...6) . (...6) ..... (...6)] - 1 = (...6) - 1 = ...5 \(⋮\) 5

25 tháng 10 2021

b, 2120 - 1110 = (21 . 21 . 21 . 21 . 21..... 21) - (11 . 11 . 11 . 11 ..... 11) = [(...1) . (...1) . (...1) . (...1).....(...1)] - [(...1) . (...1) . (...1) . (...1).....(...1)] = (...1) - (...1) = ....0 \(⋮\) 2; \(⋮\) 5

23 tháng 6 2017

a.Xet 10^9+2 co 10...0(9 chu so 0)+2 chia het cho 3

                      =10...02(8 chu so 0) chia het cho 3

Xet 10...02 co 1+0+...+0+2=3  chia het cho 3

Vay 10^9+2 chia het cho 3

b.Xet 10^10-1 co 10...0(co 10 chu so 0)-1 chia het cho 9

                     =99...9( co 9 chu so 9) chia het cho 9

Xet 99...9 co 9+9+...+9=9.9=81 chia het cho 9

Vay 10^10-1 chia het cho 9

14 tháng 11 2016

4

Do 288 chia n dư 38=>250 chia hết cho n (1)

                              => n > 38 (2)

Do 414 chia n dư 14=> 400 chia hết cho n (3)

Từ (1), (2), (3)=>n thuộc Ư(250,400;n>39)

=> n=50

14 tháng 11 2016

1

x+15 chia hết cho x+2

x+2 chia hết cho x+2 

=> x+15-(x+2) chia hết ch0 x+2

=>13 chia hết cho x+2

Do x thuộc N => x+2>= 0+2=2

Mà 13 chia hết cho 1 và 13

=> x+2 = 13

=> x=11

19 tháng 10 2015

a)Ta thấy: 6 đồng dư với 1(mod 5)

=>6100 đồng dư với 1100(mod 5)

=>6100 đồng dư với 1(mod 5)

=>6100-1 đồng dư với 1-1(mod 5)

=>6100-1 đồng dư với 0(mod 5)

=>6100-1 chia hết cho 5

b)Ta thấy:21 đồng dư với 1(mod 10)

=>2120 đồng dư với 120(mod 10)

=>2120 đồng dư với 1(mod 10)

               11 đồng dư với 1(mod 10)

=>1110 đồng dư với 110(mod 10)

=>1110 đồng dư với 1(mod 10)

=>2120-1110 đồng dư với 1-1(mod 10)

=>2120-1110 đồng dư với 0(mod 10)

=>2120-1110 chia hết cho 10

=>2120-1110 chia hết cho 2 và 5

c)Ta thấy:10 đồng dư với 1(mod 3)

=>109 đồng dư với 19(mod 3)

=>109 đồng dư với 1(mod 3)

=>109+2 đồng dư với 1+2(mod 3)

=>109+2 đồng dư với 3(mod 3)

=>109+2 đồng dư với 0(mod 3)

=>109+2 chia hết cho 3

d)Ta thấy:10 đồng dư với 1(mod 9)

=>1010 đồng dư với 110(mod 9)

=>1010 đồng dư với 1(mod 9)

=>1010-1 đồng dư với 1-1(mod 9)

=>109-1 đồng dư với 0(mod 9)

=>109-1 chia hết cho 9

19 tháng 10 2015

a) 6100 - 1 = (....6) - 1 = (....5) => hiệu đó chia hết cho 5

2110 - 1110 = (....1) - (....1) = (...0)  => hiệu đó chia hết cho 2 và 5

10+ 2 = 100..2 . tổng các chữ số bằng 3 => số đó chia hết cho 3

1010 - 1 = 999...9 = 9.111....1  chia hết cho 9 

20 tháng 11 2015

tick mình đi mình giải choBlog.Uhm.vN

20 tháng 11 2015

thu huyền tike nói nhưng có làm đâu

75 + 58.50 – 58.2520 : 22 – 59 : 58(519 : 517 – 4) : 784 : 4 + 39 : 37295 – (31 – 22.5)21125 : 1123 – 35 : (110 + 23) – 60.29 – [16 + 3.(51 – 49)]47 – (45.24– 52.12) : 14102– 60 : (56 : 54 – 3.5)2345 – 1000 : [19 – 2(21 – 18)2]1205 – [1200 – (42– 2.3)3: 40]500 – {5[409 – (23.3 – 21)2] + 103} : 15967 – [8 + 2.32– 24 : 6 + (9 – 7)3].5Bài 2. Trong các số 2540; 1347; 1638; 2356 ; số nào chia hết cho 2? Số nào chia hết cho 3? Số nào...
Đọc tiếp

75 + 58.50 – 58.25

20 : 22 – 59 : 58

(519 : 517 – 4) : 7

84 : 4 + 39 : 37

295 – (31 – 22.5)2

1125 : 1123 – 35 : (110 + 23) – 60.

29 – [16 + 3.(51 – 49)]

47 – (45.24– 52.12) : 14

102– 60 : (56 : 54 – 3.5)

2345 – 1000 : [19 – 2(21 – 18)2]

1205 – [1200 – (42– 2.3)3: 40]

500 – {5[409 – (23.3 – 21)2] + 103} : 15

967 – [8 + 2.32– 24 : 6 + (9 – 7)3].5

Bài 2. Trong các số 2540; 1347; 1638; 2356 ; số nào chia hết cho 2? Số nào chia hết cho 3? Số nào chia hết cho cả 2 và 3.

Bài 3. Điền chữ số vào dấu * để :

a. 423* chia hết cho 3 và 5.

b. 613* chia hết cho2 và 9.

Bài 4. Tìm UCLN và BCNN của.

a. 24 và 10

b. 30 và 28

c. 150 và 84

d. 11 và 15

e. 30 và 90

f. 140 ; 210 và 56

g. 105 ; 84 và 30.

h. 14 ; 82 và 124

i. 24 ; 36 và 160

j. 200 ; 125 và 75.

Bài 5. Tìm số tự nhiên x biết.

a. 36 và 36 cùng chia hết cho x và x lớn nhất.

b. 60, 84, 120 cùng chia hết cho x và x 6

c. 91 và 26 cùng chia hết cho x và 10 < x < 30.

d. 70 và 84 cùng chia hết cho x – 2 và x > 8.

e. 150, 84 và 30 đều chia hết cho x – 1 và 0 < x < 16.

Bài 6. Tìm số tự nhiên x biết.

a. x chia hết cho 16 ; 24 ; 36 và x là số nhỏ nhất khác 0.

b. x chia hết cho 30 ; 40 ; 50 và x là số nhỏ nhất khác 0.

c. x chia hết cho 36 ; 48 ; 60 và x là số nhỏ nhất khác 0.

d. x là bội chung của 18 ; 30 ; 75 và 0 x < 1000.

e. x + 2 chia hết cho 10 ; 15 ; 25 và x < 500.

f. x – 2 chia hết cho 15 ; 14 ; 20 và 400 x

Bài 7. Tìm số tự nhiên x, biết.

a. 35 chia hết cho x + 3.

b. 10 chia hết cho (2x + 1).

c. x + 7 chia hết cho 25 và x < 100.

d. x + 13 chia hết cho x + 1.

e. 2x + 108 chia hết cho 2x + 3.

3
6 tháng 11 2019

bạn lấy đề ở đâu vậy mà sao giống mình quá zợ

9 tháng 11 2021

bạn ơi bạn tự làm đi dễ mỗi tội dài thôi

2 tháng 11 2016

Chọn

Giải ra đầy đủ nhá

2 tháng 11 2016

Ôi tr. Ý mk mún nói là giải bài ra cho mình

7 tháng 10 2016

Câu hỏi của Nguyễn Nhật Loan - Toán lớp 6 - Học toán với OnlineMath

7 tháng 10 2016

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 3+ 37) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

9 tháng 8 2014

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +22 + 23) + (2+ 25  + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

 

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 33 + 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 32 + 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 337) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34  + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

 

 

20 tháng 12 2014

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

 

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 337) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.