K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

Ko có đề sao giải

6 tháng 10 2017

a/ 6a5b chia hết cho 18 nên 6a5b chia hết cho 2 và 9 ( 2,9) nguyên tố cùng nhau

Mà 6a5b chia hết cho 2 và 5 nên b=0

Vì  6a5b chia hết cho 9 nên 6+ a + 5 + 0 chia hết cho 9

Suy ra: a= 7 ( a là số có một chữ số )

Vậy số cần tìm là 6750

b/ 2A= 22+23+........+ 261

2A-A = A = 261- 2

26 tháng 6 2017

\(A=17^{18}-17^{16}\\ =17^{16}\cdot\left(17^2-1\right)\\ =17^{16}\cdot\left(289-1\right)\\ =17^{16}\cdot288\\ =17^{16}\cdot18\cdot16⋮18\)

Vậy \(A⋮18\)

\(B=1+3+3^2+...+3^{11}\)

Ta có: \(52=4\cdot13\)

\(B=1+3+3^2+...+3^{11}\\ =\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\\ =1\cdot\left(1+3\right)+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\\ =\left(1+3\right)\cdot\left(1+3^2+...+3^{10}\right)\\ =4\cdot\left(1+3^2+...+3^{10}\right)⋮4\)

Vậy \(B⋮4\)

\(B=1+3+3^2+...+3^{11}\\ =\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\\ =1\cdot\left(1+3+3^2\right)+3^3\cdot\left(1+3+3^2\right)+...+3^9\cdot\left(1+3+3^2\right)\\ =\left(1+3+3^2\right)\cdot\left(1+3^3+...+3^9\right)\\ =13\cdot\left(1+3^3+...+3^9\right)⋮13\)

Vậy \(B⋮13\)

\(4\)\(13\) là hai số nguyên tố cùng nhau nên tao có \(B⋮4\cdot13\Leftrightarrow B⋮52\)

Vậy \(B⋮52\)

\(C=3+3^3+3^5+...3^{31}\)

\(C=3+3^3+3^5+...+3^{31}\\ =\left(3+3^3\right)+\left(3^5+3^7\right)+...+\left(3^{29}+3^{31}\right)\\ =1\cdot\left(3+3^3\right)+3^4\cdot\left(3+3^3\right)+...+3^{28}\cdot\left(3+3^3\right)\\ =\left(3+3^3\right)\cdot\left(1+3^4+...+3^{28}\right)\\ =30\cdot\left(1+3^4+...+3^{28}\right)⋮15\left(\text{vì }30⋮15\right)\)

Vậy \(C⋮15\)

\(D=2+2^2+2^3+...+2^{60}\)

Tao có: \(21=3\cdot7;15=3\cdot5\)

\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ =2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\\ =\left(1+2\right)\cdot\left(2+2^3+...+2^{59}\right)\\ =3\cdot\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy \(D⋮3\)

\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)+\left(2^2+2^4\right)+...+\left(2^{58}+2^{60}\right)\\ =2\cdot\left(1+2^2\right)+2^5\cdot\left(1+2^2\right)+...+2^{57}\cdot\left(1+2^2\right)+2^2\cdot\left(1+2^2\right)+...+2^{58}\cdot\left(1+2^2\right)\\ =\left(1+2^2\right)\cdot\left(2+2^5+...+2^{57}+2^2+...+2^{59}\right)\\ =5\cdot\left(2+2^5+...+2^{57}+2^2+...+2^{59}\right)⋮5\)

Vậy \(D⋮5\)

\(D=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\\ =2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\cdot\left(1+2+2^2\right)\\ =\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{58}\right)\\ =7\cdot\left(2+2^4+...+2^{58}\right)⋮7\)

Ta có:

\(D⋮3;D⋮5\Rightarrow D⋮3\cdot5\Leftrightarrow D⋮15\)

\(D⋮3;D⋮7\Rightarrow D⋮3\cdot7\Leftrightarrow D⋮21\)

Vậy \(D⋮15;D⋮21\)

26 tháng 6 2017

Mình chỉ làm mẫu 1 câu thui nha:

\(A=17^{18}-17^{16}\)

\(A=17^{16}.17^2-17^{16}.1\)

\(A=17^{16}\left(17^2-1\right)\)

\(A=17^{16}.288\)

\(A=17^{16}.16.18\)

\(A⋮18\left(đpcm\right)\)

11 tháng 8 2018

\(A=2+2^2+2^3+...+2^{60}\)

    \(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

     \(=2.\left(1+2\right)+2^3.\left(1+2\right)+....+2^{59}.\left(1+2\right)\)

      \(=3.\left(2+2^3+...+2^{59}\right)⋮3\)

Vậy....

\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^7+5^8\right)\)

    \(=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^6.\left(5+5^2\right)\)

     \(=30.\left(1+5^2+...+5^6\right)⋮30\)

11 tháng 8 2018

Bài 1 bạn kia giải rồi 

2. Gọi d = ƯCLN(2n+5;3n+7) (\(d\inℕ^∗\) )

=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d

=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d

=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d

=> (6n+15)-(6n+14) chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* nên d = 1

=> ƯCLN(2n+5;3n+7) = 1

Vậy 2n+5 và 3n+7 là hai số nguyên tố cùng nhau

3. Nếu x+2y chia hết cho 5

=> 3.(x+2y) chia hết cho 5

=> 3x+6y chia hết cho 5

Mà 10y chia hết cho 5

=> (3x+6y)-10y chia hết cho 5

=> 3x - 4y chia hết cho 5

=> ĐPCM

24 tháng 6 2019

a, Sai đề

h, Sai đề

24 tháng 6 2019

vũ thị ngọc thảo bn có nhiều tiểu sử ghi bài sai nhờ hiha

21 tháng 10 2015

cug dễ thôi nhưng tự làm đê

1 tháng 1 2016

nó tự làm được thì đâu có cần hỏi