Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(7^{4n}-1\)
Ta có:\(7^{4n}-1\)=\(\left(7^4\right)^n-1=\left(...1\right)^n-1=\left(...1\right)-1=...0\)
Vì các số có tận cùng là 0 thì chia hết cho 5 do đó \(7^{4n}-1\)
chia hết cho 5(đpcm)
Các câu kia tương tự
a, Ta có:
\(\dfrac{4n-11}{4n-8}\)=\(\dfrac{4n-8-3}{4n-8}=\dfrac{4n-8}{4n-8}+\dfrac{-3}{4n-8}=1+\dfrac{-3}{4n-8}\)
\(\Rightarrow\)-3 \(⋮\) 4n - 8
\(\Rightarrow\)4n-8 \(\in\) Ư (-3) ={\(\pm\)1; \(\pm\)3}
Ta có bảng sau:
4n-8 | -1 | 1 | -3 | 3 |
n | \(\dfrac{7}{4}\) | \(\dfrac{9}{4}\) | \(\dfrac{5}{4}\) | \(\dfrac{11}{4}\) |
Vậy x \(\in\){ \(\varnothing\) }
b, Ta có:
2n + 1 \(⋮\) n + 1
\(\Rightarrow\) 2.(n+1) \(⋮\) n+1
\(\Rightarrow\)2 \(⋮\) n+1
\(\Rightarrow\) n+1 \(\in\) Ư (2) = { -1 ; -2; 1; 2 }
Ta có các trường hợp sau:
n + 1 = -1 \(\Rightarrow\) n= -2
n + 1 = -2 \(\Rightarrow\) n= -3
n + 1 = 1 \(\Rightarrow\) n= 0
n + 1 = 2 \(\Rightarrow\) n= 1
Vậy n \(\in\) { -2;-3;0;1 }
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{1;0;2\right\}\)
b: =>6n-4+11 chia hết cho 3n-2
=>\(3n-2\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{1\right\}\)