Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{5}{2x-1}>0\)
ĐKXĐ: \(x\ne\dfrac{1}{2}\)
Để phân thức nhận giá trị lớn hơn 0 thì:\(2x-1>0\)\(\Leftrightarrow x>\dfrac{1}{2}\)
b) \(\dfrac{x-1}{2x^2+3}>0\)
Dễ dàng nhận thấy:
\(2x^2+3\ge3>0\) với \(\forall x\)
Để phân thức nhận giá trị lớn hơn 0 thì:
\(x-1>0\Leftrightarrow x>1\)
c)\(\dfrac{x-2}{x+3}>0\). ĐKXĐ: \(x\ne-3\)
Lập bảng xét dấu:
\(x\) | \(-3\) \(2\) |
\(x-2\) | \(-\) \(-\) \(0\) \(+\) |
\(x+3\) | \(-\) \(0\) \(+\) \(+\) |
\(\dfrac{x-2}{x+3}\) | \(+\) \(-\) \(+\) |
Vì \(\dfrac{x-2}{x+3}>0\) nên từ bảng xét dấu ta có:
\(x< -3\) hoặc \(x>2\)
d)\(\dfrac{5x^2+1}{x-3}< 0\) ĐKXĐ: \(x\ne3\)
Dễ dàng nhận thấy:
\(5x^2+1\ge1>0\) với \(\forall x\)
Để biểu thức nhận giá trị nhỏ hơn 0 thì:
\(x-3< 0\Leftrightarrow x< 3\)
\(a,a^3+3a^2+3a+1-27b^3\\ =\left(a+1\right)^3-\left(3b\right)^3\\ =\left(a+1-3b\right)\left[\left(a+1\right)^2+\left(a+1\right)\left(3b\right)+\left(3b\right)^2\right]\\ =\left(a+1-3b\right)\left(a^2+2a+1+3ab+3b+9b^2\right)\)
\(c,x^6-x^4+2x^3+2x^2\\ =x^4\left(x^2-1\right)+2x^2\left(x+1\right)\\ =x^4\left(x+1\right)\left(x-1\right)+2x^2\left(x+1\right)\\ =x^2\left(x+1\right)\left[x^2\left(x-1\right)+2\right]\\ =x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
ĐK: \(x\ne1;x\ne-1\)
\(Q=\left(\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)^2}-\dfrac{1}{\left(x+1\right)}+\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}\right)\left(x-1\right)\left(x+1\right)\)
\(Q=\left(\dfrac{x-1}{x+1}-\dfrac{1}{x+1}+\dfrac{x+1}{x-1}\right)\left(x-1\right)\left(x+1\right)\)
\(Q=\left(x-1\right)^2-\left(x-1\right)+\left(x+1\right)^2\)
\(Q=x^2-2x+1-x+1+x^2+2x+1=2x^2-x+3\)
c/ \(Q=2\left(x^2-\dfrac{1}{2}x\right)+3=2\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)-\dfrac{1}{8}+3\)
\(Q=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{23}{8}\ge\dfrac{23}{8}\)
\(\Rightarrow Q_{min}=\dfrac{23}{8}\) khi \(x=\dfrac{1}{4}\)
\(1.\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}=\dfrac{\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}=\dfrac{|\sqrt{7}+1|-|\sqrt{7}-1|}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)
\(3a.x+1-\dfrac{x-1}{3}< x-\dfrac{2x+3}{2}+\dfrac{x}{3}+5\)
\(\Leftrightarrow\dfrac{6\left(x+1\right)-2\left(x-1\right)}{6}< \dfrac{6x-3\left(2x+3\right)+2x+30}{6}\)
\(\Leftrightarrow6x+6-2x+2< 6x-6x-9+2x+30\)
\(\Leftrightarrow6x-2x-2x+6+2+9-30< 0\)
\(\Leftrightarrow2x-13< 0\)
\(\Leftrightarrow x< \dfrac{13}{2}\)
KL...............
\(b.5+\dfrac{x+4}{5}< x-\dfrac{x-2}{2}+\dfrac{x+3}{3}\)
\(\Leftrightarrow\dfrac{150+6\left(x+4\right)}{30}< \dfrac{30x-15\left(x-2\right)+10\left(x+3\right)}{30}\)
\(\Leftrightarrow150+6x+24< 30x-15x+30+10x+30\)
\(\Leftrightarrow6x-30x+15x-10x+150+24-30-30< 0\)
\(\Leftrightarrow-19x+114< 0\)
\(\Leftrightarrow x>6\)
KL..................
Câu 4 :
Ta có :
\(A=\dfrac{3}{1-x}+\dfrac{4}{x}\)
\(=\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\)
Theo BĐT Bu - nhi a - cốp xki ta có :
\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
\(\Leftrightarrow\left(\dfrac{3}{1-x}+\dfrac{4}{x}\right)\left[\left(1-x\right)+x\right]\ge\left(\sqrt{\dfrac{3\left(1-x\right)}{1-x}}+\sqrt{\dfrac{4x}{x}}\right)^2=\left(\sqrt{3}+2\right)^2=7+4\sqrt{3}\)
Dấu \("="\) xảy ra khi \(\dfrac{3}{\left(1-x\right)^2}=\dfrac{4}{x^2}\)
\(\Leftrightarrow3x^2=4x^2-8x+4\)
\(\Leftrightarrow x^2-8x+4=0\)
\(\Delta=64-16=48>0\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)
Vậy GTNN của\(A=7+4\sqrt{3}\) khi \(\left[{}\begin{matrix}x_1=4+2\sqrt{3}\\x_2=4-2\sqrt{3}\end{matrix}\right.\)
c, \(x^6-x^4+2x^3+2x^2\)
\(=x^2\left(x^4-x^2+2x+2\right)\)
\(=x^2[x^2\left(x-1\right)\left(x+1\right)+2\left(x+1\right)]\)
\(=x^2\left(x+1\right)\left(x^3-x^2+2\right)\)
\(=x^2\left(x+1\right)[x^2\left(x+1\right)-2x\left(x+1\right)+2\left(x+1\right)]\)
\(=x^2\left(x+1\right)^2\left(x^2-2x+2\right)\)
d,
\(2x^3-x^2-1\)
\(=2x^3-2x^2+x^2-x+x-1\)
\(=2x^2\left(x-1\right)+x\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(2x^2+x+1\right)\)
a) ĐKXĐ của A là \(x\ne1\)
\(A=\dfrac{x^2-1}{x^2-2x+1}=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)^2}=\dfrac{x+1}{x-1}\)
ĐKXĐ của B là \(x\ne2;x\ne-2\)
\(B=\left(\dfrac{x-1}{x+2}-\dfrac{x+1}{x-2}\right):\dfrac{6}{x-2}=\left(\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\right).\dfrac{x-2}{6}=\left(\dfrac{x^2-3x+2-x^2-3x-2}{\left(x+2\right)\left(x-2\right)}\right).\dfrac{x-2}{6}=\dfrac{-6x}{\left(x+2\right)\left(x-2\right)}.\dfrac{x-2}{6}=\dfrac{-x}{x+2}\)b)
Với \(x\ne1\)
\(A>1\Leftrightarrow A-1>0\Leftrightarrow\dfrac{x+1}{x-1}>0\)
TH1 \(\left\{{}\begin{matrix}x+1>0\\x-1>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x>-1\\x>1\end{matrix}\right.\)\(\Leftrightarrow x>1\)
TH2 \(\left\{{}\begin{matrix}x+1< 0\\x-1< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x< -1\\x< 1\end{matrix}\right.\)\(\Leftrightarrow x< -1\)
c) Với \(x\ne1;x\ne2;x\ne-2\)
\(A=B\Leftrightarrow\dfrac{x+1}{x-1}=\dfrac{-x}{x+2}\)
\(\Leftrightarrow\dfrac{x+1}{x-1}+\dfrac{x}{x+2}=0\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow x^2+3x+2+x^2-x=0\)
\(\Leftrightarrow2x^2-2x+2=0\)
\(\Leftrightarrow2\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x^2-x+1=0\) \(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)
Với mọi x ta luôn có \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
=> ko có giá trị nào của x để A=B
\(=\dfrac{-x^2}{x-1}+\dfrac{x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\left(\dfrac{x}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)
\(=-\dfrac{x^2}{x-1}+\dfrac{x\left(x-1\right)}{x^2-x+1}\cdot\dfrac{x^2+x-x+1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2}{x-1}+\dfrac{x\left(x^2+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{-x^2}{x-1}+\dfrac{x\left(x^2+1\right)}{x^3+1}\)
\(=\dfrac{-x^5-x^2+\left(x^2-x\right)\left(x^2+1\right)}{\left(x^3+1\right)\left(x-1\right)}\)
\(=\dfrac{-x^5-x^2+x^4+x^2-x^3-x}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{-x^5+x^4-x^3-x}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}\)
a: \(\Leftrightarrow4\left(6-x\right)-3x=6\left(2x+3\right)-12\)
=>24-4x-3x=12x+18-12
=>12x+6=-7x+24
=>19x=18
=>x=18/19
b: \(\Leftrightarrow-210x-6\left(x-3\right)-15x=30x+10\left(2x+1\right)\)
=>-225x-6x+18=30x+20x+10
=>-231x+18-50x-10=0
=>-281x=-8
=>x=8/281
c: \(\Leftrightarrow36-2\left(x+3\right)=-4x+1-x\)
=>36-2x-6=-5x+1
=>3x=1+6-36=5-36=-31
=>x=-31/3
d: \(\Leftrightarrow-30\left(x-3\right)+10\left(2x-7\right)=6\left(6-x\right)\)
=>-30x+90+20x-70=36-6x
=>-10x+20=36-6x
=>-4x=16
=>x=-4