Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sorry mn phần a em viết lộn
đây mới đúng đề bài nha
a, 1+6+8=2+4+9
ai giải hết em tk nhưng phải chi tiết
a, \(A=\dfrac{3^{10}.11+3^{10}.5}{3^9.2^4}=\dfrac{3^{10}.\left(11+5\right)}{3^9.2^4}\)
\(=\dfrac{3^{10}.2^4}{3^9.2^4}=3\)
b, \(B=\dfrac{2^{10}.13+2^{10}.65}{2^8.104}=\dfrac{2^{10}.78}{2^8.104}\)
\(=\dfrac{2^2.3}{4}=3\)
c, \(C=\dfrac{4^9.36+64^4}{16^4.100}=\dfrac{\left(2^2\right)^9.36+\left(2^6\right)^4}{\left(2^4\right)^4.100}\)
\(=\dfrac{2^{18}.36+2^{24}}{2^{16}.100}=\dfrac{2^{18}.\left(36+2^6\right)}{2^{16}.100}\)
\(=\dfrac{2^4.100}{100}=2^4=16\)
Câu d làm tương tự! Chúc bạn học tốt!!!
Ta có:\(1<\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}<1+\frac{1}{1.2}+...+\frac{1}{\left(n-1\right)n}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1+1-\frac{1}{n}<2\)
Do không có STN nào lớn hơn 1 nhỏ hơn 2 nên biểu thức trên không phải STN
Đặt: A=1/12+1/22+1/32+…+1/n2
Ta thấy: 1/12>1/1.2
1/22>1/2.3
.…………
1/n2>1/n.(n+1)
=>A>1/1.2+1/2.3+…+1/n.(n+1)=1-1/2+1/2-1/3+…+1/n-1/(n+1)
=>A>1-1/(n+1)>1-(n+1)/(n+1)=1-1=0
=>A>0
Ta thấy: 1/22<1/1.2
1/32<1/2.3
.…………
1/n2<1/(n-1).n
=>A<1/12+1/1.2+1/2.3+…+1/(n-1).n=1/12+1-1/2+1/2-1/3+…+1/(n-1)-1/
=>A<1+1-1/(n-1)=2-1/(n-1)<2-(n-1)/(n-1)=2-1=1
=>A<1
=>0<A<1
mà 0 và 1 là 2 số tự nhiên liên tiếp
=>A không phải số tự nhiên.
=>ĐPCM
\(\frac{3^2}{5.14}+\frac{3^2}{7.18}+\frac{3^2}{9.22}+\frac{3^2}{11.26}+\frac{3^2}{13.30}\)
\(=3^2.2.\left(\frac{1}{10.14}+\frac{1}{14.18}+\frac{1}{18.22}+\frac{1}{22.26}+\frac{1}{26.30}\right)\)
\(=9.2.\frac{1}{4}.\left(\frac{14-10}{14.10}+\frac{18-14}{14.18}+\frac{22-18}{18.22}+\frac{26-22}{22.26}+\frac{30-26}{26.30}\right)\)
\(=\frac{9}{2}\left(\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+\frac{1}{18}-\frac{1}{22}+\frac{1}{22}-\frac{1}{26}+\frac{1}{26}-\frac{1}{30}\right)\)
=\(\frac{9}{2}.\left(\frac{1}{10}-\frac{1}{30}\right)=\frac{9}{2}.\frac{1}{15}=\frac{3}{10}\)
\(\frac{3^2}{5.14}+\frac{3^2}{7.18}+\frac{3^2}{9.22}+\frac{3^2}{13.30}\)
= \(2.\left(\frac{3^2.}{5.2.14}+\frac{3^2}{2.7.18}+\frac{3^2}{2.9.22}+\frac{3^2}{2.13.30}\right)\)
= \(2.\left(\frac{3^2}{10.14}+\frac{3^2}{14.18}+\frac{3^2}{18.22}+\frac{3^2}{26.30}\right)\)
= \(2.\frac{3^2}{4}\left(\frac{4}{10.14}+\frac{4}{14.18}+\frac{4}{18.22}+\frac{4}{26.30}\right)\)
= \(\frac{9}{2}\left(\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+\frac{1}{18}-\frac{1}{22}+\frac{1}{195}\right)\)
= \(\frac{9}{2}.\left(\frac{1}{10}-\frac{1}{22}+\frac{1}{195}\right)\)
= \(\frac{9}{2}.\left(\frac{3}{55}+\frac{1}{195}\right)\)
=\(\frac{9}{2}.\frac{128}{2145}\)
= \(\frac{192}{715}\)