Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 2 + 22 + 23 + ..... + 2100
=> 2A = 22 + 23 + ..... + 2101
=> 2A - A = 2101 - 2
=> A = 2101 - 2
=> A = 2100 . 2 - 2
=> A = (220)5 . 2 - 2
=> A = (1048576)5 . 2 - 2 (những số có hai chữ số tận cùng là 76 dù nâng lên lũy thừa bao nhiêu chữ số
tận cùng cũng vẫn là 76)
=> A = (......76).2 - 2
=> A = (....52) - 2
=> A = (....50)
Ta có : B = 3 + 32 + ..... + 3100
=> 3B = 32 + 33 + ..... + 3101
=> 3B - A = 3101 - 3
=> 2B = 3101 - 3
=> B = \(\frac{3^{101}-3}{2}\)
=> B = \(\frac{3^{100}.3-3}{2}=\frac{\left(3^{20}\right)^5.3-3}{2}=\frac{\left(....01\right)^5.5-3}{2}=\frac{\left(....01\right).5-3}{2}=\frac{\left(......05\right)-3}{2}\)
=> B = \(\frac{\left(....2\right)}{2}=\left(....1\right)\)
ta có: A = 31+32+33+...+32006
=> 3A = 32+33+34+...+32007
3A-A = 32007-3
2A = 32007 - 3
mà 32007 = 32004.33 = (34)501.27 = 81501.27 =( ....1).27 => 32007 có chữ số tận cùng là 7
=> 32007-3 có chữ số tận cùng là: 7-3 = 4
=> 2A = 32007 - 3 có chữ số tận cùng là 4
\(\Rightarrow A=\frac{3^{2007}-3}{2}\) có chữ số tận cùng là 2 hoặc 7
mà A = 31+32+33+...+32006 chia hết cho 2
=> A có chữ số tận cùng là 2
Ta có ; A = 3 + 32 + ..... + 3100
=> 3A = 32 + 33 + ..... + 3101
=> 3A - A = 3101 - 3
=> 2A = 3101 - 3
=> A = \(\frac{3^{101}-3}{2}\)
=> A = \(\frac{3^{100}.3-3}{2}=\frac{\left(3^{20}\right)^5.3-3}{2}=\frac{\left(....01\right)^5.5-3}{2}=\frac{\left(....01\right).5-3}{2}=\frac{\left(......05\right)-3}{2}\)
=> A = \(\frac{\left(....2\right)}{2}=\left(....1\right)\)
1/a/ Vì 32020= (34)504.34= A1 . 81
=> Chữ số tận cùng là 81.
b/ 42020=(44)504.44= A1 . 256
=> Chữ số tận cùng là 56.
c/ Vì 32020= (34)504.34= A1 . 81
=> Chữ số tận cùng là 81. (1)
Vì 52020=(54)504.54= A1 . 625
=> Chữ số tận cùng là 25 (2)
Từ (1) và (2) , suy ra:
Tổng 2 chữ số tận cùng của 32020 và 52020 là:
81 + 25 =106
=> Chữ số tận cùng là 06.
2/a/ Vì 3100=(34)23.35= A1 . 243
=> Chữ số tận cùng là 243.
b/ Vì 7200= (74)49. 74 = A1 . 2401
=> Chữ số tận cùng là 401.
b) \(A=3^1+3^2+3^3+...+3^{2006}\)
\(=3+3^2+\left(3^3+3^4+3^5+3^6\right)+....+\left(3^{2003}+3^{2004}+3^{2005}+3^{2006}\right)\)
\(=12+3^3\left(1+3+3^2+3^3\right)+...+3^{2003}\left(1+3+3^2+3^3\right)\)
\(=12+\left(1+3+3^2+3^3\right)\left(3^3+...+3^{2003}\right)\)
\(=12+40\left(3^3+...+3^{2003}\right)\)
\(=12+.....0=.....2\)
Vậy A có tận cùng là chữ số 2
____
Bạn vô câu hỏi tương tự xem nhé !
Đã có nhiều người trả lời câu này rồi đó
..
Ta có ; A = 3 + 32 + ..... + 3100
=> 3A = 32 + 33 + ..... + 3101
=> 3A - A = 3101 - 3
=> 2A = 3101 - 3
=> A = \(\frac{3^{101}-3}{2}\)
=> A = \(\frac{3^{100}.3-3}{2}=\frac{\left(3^{20}\right)^5.3-3}{2}=\frac{\left(....01\right)^5.5-3}{2}=\frac{\left(....01\right).5-3}{2}=\frac{\left(......05\right)-3}{2}\)
=> A = \(\frac{\left(....2\right)}{2}=\left(....1\right)\)