K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2016

A= 3^0+3^1+3^2+....+3^2012

 A= 1+3+3^2+...+3^2012

=> A-1 = 3+3^2+...+3^2012

           = (3+3^2+3^3+3^3)+..+(3^2009+3^2010+3^2011+3^2012)

          = 3( 1+3+3^2+3^3)+.. 3^^2009( 1+3+3^2+3^3)

          =(3+....+3^2009)(1+3+3^2+3^3)

          =(3+3^2009)40 chia hết cho 40

14 tháng 1 2016

A=(3^0+3^1+3^2+3^3)+(3^4+3^5+3^6+3^7)+...+(3^2009+3^2010+3^2011+3^2012)

A=40+3^4*(1+3+3^2+3^3)+...+3^2009*(1+3+3^2+3^3)

A-1=40+80*40+...+3^2009*40

A-1=40*(1+80+..+3^2009)

26 tháng 12 2016

A= 1 +(3^1+3^2+3^3+3^4)+..............................+(3^2009+3^2010+3^2011+3^2012)

A=1+120+................................+3^2009*(3^1+3^2+3^3+3^4)

A=1+(1+.....................+3^2009)*120

Vì 120 chia hết cho 40

suy ra (1+..........................+3^2009) chia hết cho 40

suy ra A chia 40 dư 1

suy ra A-1 chia hết cho 40

26 tháng 12 2016

nhưng bạn có tịk ko

18 tháng 12 2017

A = 30 + 31 + 3+ 33 + ... + 32011 + 32012

A = 1+( 31 + 3+ 33 + ... + 32011 + 32012   

A-1 =  31 + 3+ 33 + ... + 32011 + 32012

            A-1 có 2012 số hạng ,nhóm 4 số hạng liên tiếp với nhau , ta được 503 nhóm :

A-1=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+....+3^2009(1+3+3^2+3^3)=40.(3+3^5+...+3^2009)

=>       (A-1) chia hết cho 40

20 tháng 12 2017

Hoàng...

19 tháng 4 2016

4a=4+42+43+......+42013

4a-a=(4+42+43+......+42013)-(1+4+42+......+42012)

3a=42013-1

a=42013-1

       3       

27 tháng 1 2016

lạnh quá,không muốn nghĩ nữa......Z...z...z

1 tháng 10 2017

Bài 1 : \(A=1+3+3^2+...+3^{31}\)

a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)

\(\Rightarrow A=13+3^9.13\)

\(\Rightarrow A=13.\left(1+...+3^9\right)\)

\(\Rightarrow A⋮13\)

b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)

\(\Rightarrow A=40+...+3^8.40\)

\(\Rightarrow A=40.\left(1+...+3^8\right)\)

\(\Rightarrow A⋮40\)

1 tháng 10 2017

Bài 2:

Ta có: \(C=3+3^2+3^4+...+3^{100}\)

\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)

\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)

\(\Rightarrow3.40+...+3^{97}.40\)

Vì tất cả các số hạng của biểu thức C đều chia hết cho 40

\(\Rightarrow C⋮40\)

Vậy \(C⋮40\)

21 tháng 10 2021

giúp tớ với

17 tháng 12 2021

a)

A=1+4+42+...+459A=1+4+42+...+459

A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)

A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)

A=21+43.21+...+447.21A=21+43.21+...+447.21

A=21(1+43+...+447)A=21(1+43+...+447)

⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả

1 tháng 11 2015

c)D=4+42+43+44+...+42012

D=(4+42)+(43+44)+...+(42011+42012)

D=4.5+43.5+45.5+...+42011.5

D=5.(4+43+42011)

=>D chia hết cho 5

=>ĐPCM

1 tháng 11 2015

tất cả đều có trong câu hỏi tương tự