Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(3^0+3^1+3^2+3^3)+(3^4+3^5+3^6+3^7)+...+(3^2009+3^2010+3^2011+3^2012)
A=40+3^4*(1+3+3^2+3^3)+...+3^2009*(1+3+3^2+3^3)
A-1=40+80*40+...+3^2009*40
A-1=40*(1+80+..+3^2009)
A= 1 +(3^1+3^2+3^3+3^4)+..............................+(3^2009+3^2010+3^2011+3^2012)
A=1+120+................................+3^2009*(3^1+3^2+3^3+3^4)
A=1+(1+.....................+3^2009)*120
Vì 120 chia hết cho 40
suy ra (1+..........................+3^2009) chia hết cho 40
suy ra A chia 40 dư 1
suy ra A-1 chia hết cho 40
A = 30 + 31 + 32 + 33 + ... + 32011 + 32012
A = 1+( 31 + 32 + 33 + ... + 32011 + 32012
A-1 = 31 + 32 + 33 + ... + 32011 + 32012
A-1 có 2012 số hạng ,nhóm 4 số hạng liên tiếp với nhau , ta được 503 nhóm :
A-1=3(1+3+3^2+3^3)+3^5(1+3+3^2+3^3)+....+3^2009(1+3+3^2+3^3)=40.(3+3^5+...+3^2009)
=> (A-1) chia hết cho 40
4a=4+42+43+......+42013
4a-a=(4+42+43+......+42013)-(1+4+42+......+42012)
3a=42013-1
a=42013-1
3
Bài 1 : \(A=1+3+3^2+...+3^{31}\)
a. \(A=\left(1+3+3^2\right)+...+3^9.\left(1.3.3^2\right)\)
\(\Rightarrow A=13+3^9.13\)
\(\Rightarrow A=13.\left(1+...+3^9\right)\)
\(\Rightarrow A⋮13\)
b. \(A=\left(1+3+3^2+3^3\right)+...+3^8.\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=40+...+3^8.40\)
\(\Rightarrow A=40.\left(1+...+3^8\right)\)
\(\Rightarrow A⋮40\)
Bài 2:
Ta có: \(C=3+3^2+3^4+...+3^{100}\)
\(\Rightarrow C=(3+3^2+3^3+3^4)+...+(3^{97}+3^{98}+3^{99}+3^{100})\)
\(\Rightarrow3.(1+3+3^2+3^3)+...+3^{97}.(1+3+3^2+3^3)\)
\(\Rightarrow3.40+...+3^{97}.40\)
Vì tất cả các số hạng của biểu thức C đều chia hết cho 40
\(\Rightarrow C⋮40\)
Vậy \(C⋮40\)
a)
A=1+4+42+...+459A=1+4+42+...+459
A=(1+4+42)+(43+44+45)+...+(457+458+459)A=(1+4+42)+(43+44+45)+...+(457+458+459)
A=(1+4+42)+43(1+4+42)+...+447(1+4+42)A=(1+4+42)+43(1+4+42)+...+447(1+4+42)
A=21+43.21+...+447.21A=21+43.21+...+447.21
A=21(1+43+...+447)A=21(1+43+...+447)
⇒A⋮21
các số như 43,447,459,458........ là 4 mũ và các số đằng sau là số mũ
câu b cũng làm như vậy nhưng dổi các số và kết quả
c)D=4+42+43+44+...+42012
D=(4+42)+(43+44)+...+(42011+42012)
D=4.5+43.5+45.5+...+42011.5
D=5.(4+43+42011)
=>D chia hết cho 5
=>ĐPCM
A= 3^0+3^1+3^2+....+3^2012
A= 1+3+3^2+...+3^2012
=> A-1 = 3+3^2+...+3^2012
= (3+3^2+3^3+3^3)+..+(3^2009+3^2010+3^2011+3^2012)
= 3( 1+3+3^2+3^3)+.. 3^^2009( 1+3+3^2+3^3)
=(3+....+3^2009)(1+3+3^2+3^3)
=(3+3^2009)40 chia hết cho 40