Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
A − B = 3 x 3 y 2 + 2 x 2 y − x y − 4 x y − 3 x 2 y + 2 x 3 y 2 + y 2 = 3 x 3 y 2 + 2 x 2 y − x y − 4 x y + 3 x 2 y − 2 x 3 y 2 − y 2 = 3 x 3 y 2 − 2 x 3 y 2 + 2 x 2 y + 3 x 2 y + ( − x y − 4 x y ) − y 2 = x 3 y 2 + 5 x 2 y − 5 x y − y 2
Chọn đáp án C
Ta có
A + B = 3 x 3 y 2 + 2 x 2 y − x y + 4 x y − 3 x 2 y + 2 x 3 y 2 + y 2 = 3 x 3 y 2 + 2 x 3 y 2 + 2 x 2 y − 3 x 2 y + ( − x y + 4 x y ) + y 2 = 5 x 3 y 2 − x 2 y + 3 x y + y 2
Chọn đáp án D
Vì đơn thức đồng dạng là đơn thức có hệ số khác 0 và phần biến giống nhau nên trong các cặp đơn thức trên , cặp đơn thức đồng dạng là:
B. \(-2xy^3\) và \(3xy^3\)
C. \(0x^3y^5\) và \(-5x^3y^5\)
D. \(5x^3y^2\) và \(x^3y^2\)
- Nếu y dương hay âm thì y2, y4 luôn dương nên ta không cần xét.
- Nếu x dương thì đơn thức A dương nhưng B âm.
- Nếu x âm thì đơn thức B dương nhưng A âm.
-> Vậy hai đơn thức không thể cùng có giá trị dương.
a)M=3x2y-2xy2+2x2y+2xy+3xy2
=\(5x^2y+xy^2+2xy\)
N=2x2y+xy+xy2-4xy2-5xy
=\(2x^2y-3xy^2-4xy\)
b) M-N=(\(5x^2y+xy^2+2xy\))-(\(2x^2y-3xy^2-4xy\))
=\(5x^2y+xy^2+2xy\)\(-\)\(2x^2y+3xy^2+4xy\)
=\(3x^2y+4xy^2+6xy\)
M+N=\(5x^2y+xy^2+2xy\)\(+\)\(2x^2y-3xy^2-4xy\)
=\(7x^2y-2xy^2-2xy\)
c) Ta có P(x)=0
\(\Rightarrow\)6-2x=0
\(\Rightarrow\)x=3
Vậy x=3 là nghiệm của đa thức P(x)
Ta có: \(A+B+C=0\)
\(\Leftrightarrow3x^2y+5xy^2-2xy+1+2x^2y-7xy^2+6xy-8-5x^2y+4xy^2-4xy+12=0\)
\(\Leftrightarrow2xy^2+5=0\)
\(\Leftrightarrow2x\cdot\left(-2\right)^2+5=0\)
\(\Leftrightarrow8x+5=0\)
\(\Leftrightarrow8x=-5\)
hay \(x=-\dfrac{5}{8}\)
Vậy: \(x=-\dfrac{5}{8}\)
\(A=-\dfrac{5}{8}x^5y^4\left(-\dfrac{3}{2}x^2yz^3\right)=\dfrac{15}{16}x^7y^5z^3\)
hệ số 15/16 ; biến x^7y^5z^3 ; bậc 15
đề ?
Bài 2: Tính tích của các đơn thức sau, rồi tìm bậc của đơn thức thu được:
a) 2x2y và – 11xy4 ; b) x3y2 và xy5z7