K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

a)\(\left|2x+3\right|=x+2\)

\(\Leftrightarrow\left(\left|2x+3\right|\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow4x^2+12x+9=x^2+4x+4\)

\(\Leftrightarrow3x^2+8x+5=0\)

\(\Leftrightarrow3x^2+3x+5x+5=0\)

\(\Leftrightarrow3x\left(x+1\right)+5\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x+5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{5}{3}\end{matrix}\right.\)

b)\(x^2-9x+8=0\)

\(\Leftrightarrow x^2-8x-x+8=0\)

\(\Leftrightarrow x\left(x-8\right)-\left(x-8\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-8=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)

c)\(x^2-2\left(x-2\right)=4\)

\(\Leftrightarrow\left(x^2-4\right)-2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)-2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

13 tháng 3 2017

b/ \(x^2-9x+8=0\)

Ta có: a = 1 ; b = -9 ; c = 8

\(\Delta=b^2-4ac=\left(-9\right)^2-4.1.8=49\)

\(\Rightarrow\sqrt{\Delta}=7\)

Pt có 2 nghiệm:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{9+7}{2.1}=8\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{9-7}{2.1}=1\)

Vậy.......................................

17 tháng 9 2017

ta có : \(m=x^2-x+1=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi \(x\)

\(\Rightarrow\) giá trị nhỏ nhất của \(m=x^2-x+1\)\(\dfrac{3}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)

vậy giá trị nhỏ nhất của \(m=x^2-x+1\)\(\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

18 tháng 6 2017

\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)

= \(\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)

= \(z^2\)

18 tháng 6 2017

Ta có:(x + y + z)2 - 2(x + y + z) (x + y) + (x + y)2

=[(x+y+z)-(x+y)]2=z2

26 tháng 9 2017

a) \(x^3-\dfrac{1}{9}x=0\)

\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)

\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)

b) \(x\left(x-3\right)+x-3=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)

c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)

\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)

\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)

d) \(x^2\left(x-3\right)+27-9x=0\)

\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)

\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)

\(\Rightarrow x-3=0\Rightarrow x=3.\)

4 tháng 10 2017

\(\dfrac{2}{5}\)

18 tháng 7 2017

Bài 1:

\(a,\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)

\(=x^6-3x^4+3x^2-1-x^6+1\)

\(=-3x^2\left(x^2-1\right)\)

\(b,\left(x^4-3x^2+9\right)\left(x^2+3\right)-\left(3+x^2\right)^3\)

\(=x^6+27-27-27x^2-9x^4-x^6\)

\(=-9x^2\left(3-x^2\right)\)

18 tháng 7 2017

Bài 5:

\(A=x^2-2x+1\)

\(=\left(x^2-2x+1\right)-2\)

\(=\left(x-1\right)^2-2\)

Với mọi giá trị của x ta có:

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2-2\ge-2\)

Vậy Min A = -2

Để A = -2 thì \(x-1=0\Rightarrow x=1\)

b, \(B=4x^2+4x+5\)

\(=\left(4x^2+4x+1\right)+4\)

\(=\left(2x+1\right)^2+4\)

Với mọi giá trị của x ta có:

\(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+4\ge4\)

Vậy Min B = 4

Để B = 4 thì \(2x+1=0\Rightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)

c, \(C=2x-x^2-4\)

\(=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

Với mọi giá trị của x ta có:

\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-3\le-3\)Vậy Max C = -3

để C = -3 thì \(x-1=0\Rightarrow x=1\)

22 tháng 7 2017

dùng đinh lý bezou đc ko bn

1 tháng 10 2017

a , \(x^2+2xy+y^2+1=\left(x+y\right)^2+1>0\) , \(\forall x,y\)

b , \(x^2-x+1=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0,\forall x\)

c , \(x-1-x^2=-\left(x^2-x+1\right)\)

\(x^2-x+1>0\) (c.m b)

nên -(\(x^2-x+1\) ) < 0 , \(\forall x\)

1 tháng 10 2017

Câu a :

\(x^2+2xy+y^2+1=\left(x+y\right)^2+1\ge1\) nên bất kì giá trị nào của x thì biểu thức trên luôn lớn hơn 0

Câu b :

\(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

nên bất kì giá trị của x thì biểu thức trên luôn lớn hơn 0

Câu c :

\(x-1-x^2=-\left(x^2-x+1\right)=-\left(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\le-\dfrac{3}{4}\)

nên bất kì giá trị nào của x thì biểu thức luôn nhỏ hơn 0

5 tháng 7 2017

\(A=\left(x+1\right)^3-\left(x+3\right)^2\left(x+1\right)+4x^2+8\)

\(A=x^3+3x^2+3x+1-\left(x^2+6x+9\right)\left(x+1\right)+4x^2+8\)

\(A=x^3+3x^2+3x+1-\left(x^3+6x^2+9x+x^2+6x+9\right)+4x^2+8\)

\(A=x^3+3x^2+3x+1-x^3-6x^2-9x-x^2-6x-9+4x^2+8\)

\(A=\left(x^3-x^3\right)+\left(3x^2-6x^2-x^2+4x^2\right)+\left(3x-9x-6x\right)+\left(1-9+8\right)\)

\(A=-12x\)

\(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(B=x^3+2x^2+4x-2x^2-4x-8-\left(x^3+3x^2+3x+1\right)+3\left(x^2-1\right)\)

\(B=x^3+2x^2+4x-2x^2-4x-8-x^3-3x^2-3x-1+3x^2-3\)

\(B=\left(x^3-x^3\right)+\left(2x^2-2x^2-3x^2+3x^2\right)+\left(4x-4x-3x\right)+\left(-8-3-1\right)\)

\(B=-3x-12\)

Câu C tương tự.

Chúc bạn học tốt!!!

5 tháng 7 2017

A = \(\left(x+1\right)^3-\left(x+3\right)^2.\left(x+1\right)+4x^2+8\)

A = \(\left(x+1\right)\left(x+1-x-3\right)\left(x+1+x+3\right)+4x^2+8\)

A = \(\left(x+1\right).\left(-2\right).\left(2x+4\right)+4x^2+8\)

A = \(\left(-2\right)\left(2x^2+4x+2x+4\right)+4x^2+8\)

A = \(\left(-2\right)\left(2x^2+6x+4\right)+4x^2+8\)

A = \(-4x^2-12x-8+4x^2+8=-12x\)

b) B = \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)

B = \(x^3-8-\left(x+1\right)\left(x^2+2x+1+3x-3\right)\)

B = \(x^3-8-\left(x+1\right)\left(x^2+5x-2\right)\)

B = \(x^3-8-x^3-5x^2+2x-x^2-5x+2\)

B = \(-6x^2-3x-6\)

a: \(x^2-4x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

=>x=1 hoặc x=3

b: \(x^2+x-12=0\)

=>(x+4)(x-3)=0

=>x=3 hoặc x=-4

c: \(3x^2+2x-5=0\)

\(\Leftrightarrow3x^2+5x-3x-5=0\)

=>(3x+5)(x-1)=0

=>x=1 hoặc x=-5/3

d: \(x^4-2x^2-3=0\)

\(\Leftrightarrow x^4-3x^2+x^2-3=0\)

\(\Leftrightarrow x^2-3=0\)

hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)

Bài 1: 

a: \(\Leftrightarrow x^2-4x-x^2+8=0\)

=>-4x+8=0

hay x=2

b: \(\Leftrightarrow3x^2-3x+2x-2-3\left(x^2-x-2\right)=4\)

\(\Leftrightarrow3x^2-x-2-3x^2+3x+6=4\)

=>2x+4=4

hay x=0