Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(A< \frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+1-\frac{1}{50}\)
\(=2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\)
\(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(...\)
\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Mà \(\frac{49}{50}< 2\\
\Rightarrow A< 2\)
Ta có :A= (1+2)+(22+23+24)+..........+(22015+22016+22017)
A= 3.22.(1+2+22)+.......+22015.(1+2+22)
A=3.22.7+........+22015.7
A=3+7.(22+.....+22015)
A= 7.(22+....+22015) +3
Vậy A chia có dư r=3
A = 1 + 2 + 22 +......+ 22016 + 22017
= (1 + 2) + (22 + 23 + 24) + (25 + 26 + 27) + ...... + (22015 + 22016 + 22017)
= 3 + 22(1 + 2 + 22) + 25(1 + 2 + 22) + .... + 22015(1 + 2 + 22)
= 3 + 7(22 + 25 +....+ 22015)
Ta thấy 7(22 + 25 +....+ 22015) \(⋮7\)
Vậy A chia 7 dư 3
Ta có : A=1+2+22+...+22013+22014
=(1+2)+(22+23)+...+(22013+22014)
=1(1+2)+22(1+2)+...+22013(1+2)
=1.3+22.3+...+22013.3
Vì 3\(⋮\)3 nên 1.3+22.3+...+22013.3\(⋮\)3
\(\Rightarrow A⋮3\)
\(\Rightarrow\)A chia cho 3 dư 0
Vậy A chia cho 3 dư 0.
Tớ làm sai đấy nhá, đừng chép vào.