K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{2023}{1\cdot2}+\dfrac{2023}{2\cdot3}+...+\dfrac{2023}{2022\cdot2023}\)

\(=2023\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2022\cdot2023}\right)\)

\(=2023\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)

\(=2023\left(1-\dfrac{1}{2023}\right)=2023\cdot\dfrac{2022}{2023}=2022\)

4
456
CTVHS
7 tháng 5 2024

\(A=\dfrac{2023}{1.2}+\dfrac{2023}{2.3}+\dfrac{2023}{3.4}+...+\dfrac{2023}{2022.2023}\)

\(A=\dfrac{2023}{1}.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2022.2023}\right)\)

\(A=\dfrac{2023}{1}.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\right)\)

\(A=\dfrac{2023}{1}.\left(1-\dfrac{1}{2023}\right)\)

\(A=\dfrac{2023}{1}.\dfrac{2022}{2023}\)

\(A=1.2022\)

\(A=2022\)

Vậy \(A=2022\)

 

29 tháng 3 2023

x-(1/1.2 + 1/2.3 + 1/3.4 + ...+ 1/2022.2023)= -2024/2023

x-(1-1/2 + 1/2-1/3 + 1/3-1/4 + ... + 1/2022-1/2023)=-2024/2023

x-(1-1/2023)=-2024/2023

x-2022/2023=-2024/2023

x = -2024/2023+2022/2023

x = -2/2023

Vậy x = -2/2023

29 tháng 3 2023

:(((

19 tháng 10 2023

a) 5.3²⁰²³ = 50.3²⁰²³ - 5.9ˣ

5.9ˣ = 50.3²⁰²³ - 5.3²⁰²³

5.(3²)ˣ = 5.3²⁰²³.(10 - 1)

5.(3²)ˣ = 5.3²⁰²³.9

3²ˣ = 3²⁰²³.3²

3²ˣ = 3²⁰²⁵

2x = 2025

x = 2025/2

b) 2.3ˣ + 5.3ˣ⁺¹ = 153

3ˣ.(2 + 5.3) = 153

3ˣ.17 = 153

3ˣ = 153/17

3ˣ = 9

3ˣ = 3²

x = 2

12 tháng 6 2023

giúp em với

26 tháng 1 2024

\(A=\dfrac{2023^{2022+2}}{2023^{2022-1}}=2023^{2024-2021}=2023^3\\ B=\dfrac{2023^{2022}}{2023^{2022-3}}=2023^3\\ \Rightarrow A=B\left(=2023^3\right)\)

17 tháng 4 2023

Áp dụng tính chất : Nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\) ( a; b; n ϵ N , b; n ≠ 0 )

Ta có \(\dfrac{2023^{31}+5}{2023^{32}+5}< 1\)

⇒ \(B=\dfrac{2023^{31}+5}{2023^{32}+5}< \dfrac{2023^{31}+5+2018}{2023^{32}+5+2018}=\dfrac{2023^{31}+2023}{2023^{32}+2023}=\dfrac{2023\left(2023^{30}+1\right)}{2023\left(2023^{31}+1\right)}=\dfrac{2023^{30}+1}{2023^{31}+1}=A\)Vậy A > B

17 tháng 4 2023

Ta có 2023A = \(\dfrac{2023.\left(2023^{30}+5\right)}{2023^{31}+5}=\dfrac{2023^{31}+5.2023}{2023^{31}+5}\)

\(=1+\dfrac{2022.5}{2023^{31}+5}\)

Lại có 2023B = \(\dfrac{2023.\left(2023^{31}+5\right)}{2023^{32}+5}=\dfrac{2023^{32}+2023.5}{2023^{32}+5}\)

\(=1+\dfrac{2022.5}{2023^{32}+5}\)

Dễ thấy 202331 + 5 < 202332 + 5

\(\Leftrightarrow\dfrac{2022.5}{2023^{31}+5}>\dfrac{2022.5}{2023^{32}+5}\)

\(\Leftrightarrow1+\dfrac{2022.5}{2023^{31}+5}>1+\dfrac{2022.5}{2023^{32}>5}\)

\(\Leftrightarrow2023A>2023B\Leftrightarrow A>B\)

\(2023A=\dfrac{2023^{31}+4046}{2023^{31}+2}=1+\dfrac{4044}{2023^{31}+2}\)

\(2023B=\dfrac{2023^{32}+4046}{2023^{32}+2}=1+\dfrac{4044}{2023^{32}+2}\)

mà 2023^31+2<2023^32+2

nên A>B

a: \(B=\dfrac{154}{155+156}+\dfrac{155}{155+156}\)

\(\dfrac{154}{155}>\dfrac{154}{155+156}\)

\(\dfrac{155}{156}>\dfrac{155}{155+156}\)

=>154/155+155/156>(154+155)/(155+156)

=>A>B

b: \(C=\dfrac{2021+2022+2023}{2022+2023+2024}=\dfrac{2021}{6069}+\dfrac{2022}{6069}+\dfrac{2023}{6069}\)

2021/2022>2021/6069

2022/2023>2022/2069

2023/2024>2023/6069

=>D>C

26 tháng 4 2022
Miug
19 tháng 4 2024

...