K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2022

b) /2x-3/-x=5

+) 2x-3>0⇔x>\(\dfrac{3}{2}\)

    2x-3-x=5

⇔2x-x=5+3

⇔x=8 

+) 2x-3<0⇔x<\(\dfrac{3}{2}\)

   -(2x-3)-x=5

⇔-2x+3-x=5

⇔-2x-x=5-3

⇔-3x=2

⇔x=\(\dfrac{-2}{3}\)

    S={8,\(\dfrac{-2}{3}\)}

7 tháng 5 2022

câu a thiếu dấu bn oi !!!!

30 tháng 11 2022

Bài 3:

a: =>3x^2-6x-x-3x^2=14

=>-7x=14

=>x=-2

b: \(\Leftrightarrow2x^2+10x-x-5-2x^2-9x-x-4.5=3.5\)

=>-x-9,5=3,5

=>-x=12

=>x=-12

c: =>\(3x-3x^2+9x=36\)

=>-3x^2+12x-36=0

=>x^2-6x+12=0(loại)

d: \(\Leftrightarrow3x^2-3x+x-1+4x-3x^2=5\)

=>2x=6

=>x=3

10 tháng 9 2020

a) \(\left(2x-5\right)^2-\left(2x+3\right)\left(2x-3\right)=10\Leftrightarrow\left(4x^2-20x+25\right)-\left(4x^2-9\right)-10=0\)

\(\Leftrightarrow-20x+24=0\Leftrightarrow x=\frac{6}{5}\)

b) \(\left(4x-1\right)\left(x+2\right)-\left(2x+3\right)^2-5\left(x-1\right)=9\Leftrightarrow-10x-15=0\)

\(\Leftrightarrow x=\frac{-3}{2}\)

c) \(\left(x+1\right)^3-\left(x-1\right)^3-2=6\Leftrightarrow\left(x^3+3x^2+3x+1\right)-\left(x^3-3x^2+3x-1\right)-8=0\)

\(\Leftrightarrow6x^2-6=0\Leftrightarrow x=\pm1\)

d) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x+1\right)\left(x^2-x+1\right)-3\left(-x-2\right)=5\)

\(\Leftrightarrow\left(x^3+8\right)-\left(x^3+1\right)+3x+6=5\Leftrightarrow3x+8=0\Leftrightarrow x=\frac{-8}{3}\)

6 tháng 1 2022

đoán xem

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

d)

$x^4+2x^3+2x^2+2x+1$

$=(x^4+2x^3+x^2)+(x^2+2x+1)$

$=(x^2+x)^2+(x+1)^2=x^2(x+1)^2+(x+1)^2$

$=(x+1)^2(x^2+1)$

e)

$x^2y+xy^2+x^2z+y^2z+2xyz$

$=xy(x+y)+z(x^2+y^2)+2xyz$

$=xy(x+y)+z(x^2+y^2+2xy)$

$=xy(x+y)+z(x+y)^2=(x+y)(xy+zx+zy)$

f)

$x^5+x^4+x^3+x^2+x+1$

$=(x^5+x^4)+(x^3+x^2)+(x+1)=x^4(x+1)+x^2(x+1)+(x+1)$

$=(x+1)(x^4+x^2+1)$

$=(x+1)[(x^4+2x^2+1)-x^2]$

$=(x+1)[(x^2+1)^2-x^2]=(x+1)(x^2+1-x)(x^2+1+x)$

AH
Akai Haruma
Giáo viên
5 tháng 8 2020

a)

$x^4-2x^3+2x-1=(x^4-2x^3+x^2)-(x^2-2x+1)$

$=(x^2-x)^2-(x-1)^2$

$=x^2(x-1)^2-(x-1)^2=(x-1)^2(x^2-1)=(x-1)^2(x-1)(x+1)$

$=(x-1)^3(x+1)$

b)

$a^6-a^4+2a^3+2a^2$

$=a^4(a^2-1)+2a^2(a+1)$

$=a^4(a-1)(a+1)+2a^2(a+1)$

$=(a+1)[a^4(a-1)+2a^2]$

$=a^2(a+1)[a^2(a-1)+2]$

$=a^2(a+1)(a^3-a^2+2)=a^2(a+1)[a^2(a+1)-2(a^2-1)]$

$=a^2(a+1)[a^2(a+1)-2(a-1)(a+1)]$

$=a^2(a+1)(a+1)(a^2-2a+2)=a^2(a+1)^2(a^2-2a+2)$

c)

$x^4+x^3+2x^2+x+1$

$=(x^4+2x^2+1)+(x^3+x)$

$=(x^2+1)^2+x(x^2+1)=(x^2+1)(x^2+1+x)$

9 tháng 9 2020

Bài 4.

1) ( x + 3 )( x2 - 3x + 9 ) - x( x2 - 3 ) = 8( 5 - x )

<=> x3 + 27 - x3 + 3x = 40 - 8x

<=> 27 + 3x = 40 - 8x

<=> 3x + 8x = 40 - 27

<=> 11x = 13

<=> x = 13/11

2) ( 2x + 1 )3 + ( 2x + 3 )3 = 0

<=> [ ( 2x + 1 ) + ( 2x + 3 ) ][ ( 2x + 1 )2 - ( 2x + 1 )( 2x + 3 ) + ( 2x + 3 )2 ] = 0

<=> ( 2x + 1 + 2x + 3 )[ 4x2 + 4x + 1 - ( 4x2 + 8x + 3 ) + 4x2 + 12x + 9 ] = 0

<=> ( 4x + 4 )( 8x2 + 16x + 10 - 4x2 - 8x - 3 ) = 0

<=> ( 4x + 4 )( 4x2 + 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}4x+4=0\\4x^2+8x+7=0\end{cases}}\)

+) 4x + 4 = 0 

<=> 4x = -4

<=> x = -1

+) 4x2 + 8x + 7 = 0 (*)

Ta có 4x2 + 8x + 7 = ( 4x2 + 8x + 4 ) + 3 = ( 2x + 2 )2 + 3 ≥ 3 > 0 ∀ x

=> (*) không xảy ra 

Vậy x = -1

Bài 5.

1) A = x2 - 2x + 2 = ( x2 - 2x + 1 ) + 1 = ( x - 1 )2 + 1 ≥ 1 ∀ x

Đẳng thức xảy ra <=> x - 1 = 0 => x = 1

=> MinA = 1 <=> x = 1

2) A = 4x2 + 4x + 5 = ( 4x2 + 4x + 1 ) + 4 = ( 2x + 1 )2 + 4 ≥ 4 ∀ x

Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2

=> MinA = 4 <=> x = -1/2

3) A = 2x2 + 3x + 3 = 2( x2 + 3/2x + 9/16 ) + 15/8 = 2( x + 3/4 )2 + 15/8 ≥ 15/8 ∀ x

Đẳng thức xảy ra <=> x + 3/4 = 0 => x = -3/4

=> MinA = 15/8 <=> x = -3/4

4) A = 3x2 + 5x = 3( x2 + 5/3x + 25/36 ) - 25/12 = 3( x + 5/6 )2 - 25/12 ≥ -25/12 ∀ x

Đẳng thức xảy ra <=> x + 5/6 = 0 => x = -5/6

=> MinA = -25/12 <=> x = -5/6

5) B = 2x - x2 - 4 = -( x2 - 2x + 1 ) - 3 = -( x - 1 )2 - 3 ≤ -3 ∀ x

Đẳng thức xảy ra <=> x - 1 = 0 => x = 12

=> MaxB = -3 <=> x = 1

6) -x2 - 4x = -( x2 + 4x + 4 ) + 4 = -( x + 2 )2 + 4 ≤ 4 ∀ x

Đẳng thức xảy ra <=> x + 2 = 0 => x = -2

=> MaxB = 4 <=> x = -2

7) B = 3x - 2x2 - 2 = -2( x2 - 3/2x + 9/16 ) - 7/8 = -2( x - 3/4 )2 - 7/8 ≤ -7/8 ∀ x

Đẳng thức xảy ra <=> x - 3/4 = 0 => x = 3/4

=> MaxB = -7/8 <=> x = 3/4

8) B = x( 3 - x ) = -x2 + 3x = -( x2 - 3x + 9/4 ) + 9/4 = -( x - 3/2 )2 + 9/4 ≤ 9/4 ∀ x

Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2

=> MaxB = 9/4 <=> x = 3/2

9) A = ( x - 1 )( x + 1 )( x + 2 )( x + 4 )

        = [ ( x - 1 )( x + 4 ) ][ ( x + 1 )( x + 2 ) ]

        = ( x2 + 3x - 4 )( x2 + 3x + 2 ) (*)

Đặt t = x2 + 3x - 4

(*) <=> t( t + 6 )

       = t2 + 6t

       = ( t2 + 6t + 9 ) - 9

       = ( t + 3 )2 - 9

       = ( x2 + 3x - 4 + 3 )2 - 9

       = ( x2 + 3x - 1 )2 - 9 ≥ -9 ∀ x

=> MinA = -9 ( chỗ này mình không xét giá trị của x vì nghiệm nó xấu lắm '-' )

2 tháng 10 2018

\(a.\) \(x^3-25x=0\)

\(\Leftrightarrow x\left(x^2-5^2\right)=0\)

\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)

TH1: \(x=0\)

TH2: \(x+5=0\Rightarrow x=-5\)

TH3: \(x-5=0\Rightarrow x=5\)

2 tháng 10 2018

a, x3-25x = 0

\(\Leftrightarrow\) x( x2- 25) = 0

\(\Leftrightarrow\) x( x- 5)( x+ 5) = 0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: S= { 0; 5; -5}

b, (2x+3)2 = (x+4)2

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+3=x+4\\2x+3=-x-4\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x-x=4-3\\2x+x=-4-3\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=\dfrac{-7}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm: S= {1; \(\dfrac{-7}{3}\)}

c, (2x-1)2 - (2x-5)(2x+5) = 18

\(\Leftrightarrow\) 4x2- 4x+ 1 - ( 4x2- 25) = 18

\(\Leftrightarrow\) 4x2- 4x+ 1- 4x2+ 25 = 18

\(\Leftrightarrow\) -4x + 26 = 18

\(\Leftrightarrow\) -4x = -8

\(\Leftrightarrow\) x = 2

Vậy phương trình có tập nghiệm S = { 2}

d, x3 - 8 = ( x-2)3

\(\Leftrightarrow\) x3 - 8 = x3 - 6x2 + 12x -8

\(\Leftrightarrow\) 6x2 - 12x = 0

\(\Leftrightarrow\) 6x( x- 2) = 0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm: S = {0; 2}