K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2019

a) \(\frac{1}{x^2-x+1}+1-\frac{x^2+2}{x^3+1}\)

+) Đkxđ: \(\hept{\begin{cases}x^2-x+1\ne0\\x^3+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\ne0\\x^3\ne-1\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ne0\left(lđ\right)\\x\ne-1\end{cases}}}\)

+) \(A=\frac{1}{x^2-x+1}+1-\frac{x^2+2}{x^3+1}\)

\(=\frac{1}{x^2-x+1}+1-\frac{x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x+1+x^3+1-x^2+2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x^3-x^2+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)

P/s: ko chắc

7 tháng 12 2019

Huhu luoi qua

a) \(\frac{1}{x^2-x+1}+1-\frac{x^2+2}{x^3+1}\)

\(=\frac{1}{x^2-x+1}+1-\left(\frac{x^2+2}{x^3+1}\right)\)

\(=\frac{x^5-2x^4+3x^3-2x^2+x}{x^5-x^4+x^3+x^2-x+1}\)

\(=\frac{x\left(x^4-2x^3+3x^2-2x+1\right)}{\left(x+1\right)\left(x^4-2x^3+3x^2-2x+1\right)}\)

\(=\frac{x}{x+1}\)

b) \(\frac{7}{x}-\frac{x}{x+6}+\frac{36}{x^2+6x}\)

\(=\frac{-x^2+7x+78}{x^2+6x}\)

\(=\frac{\left(-x-6\right)\left(x-13\right)}{x\left(x+6\right)}\)

\(=\frac{-x+13}{x}\)

17 tháng 10 2018

ko có thánh nhân nào rảnh làm hết đâu limdim

17 tháng 10 2018

giúp hộ 1 câu đi mà T^T

13 tháng 6 2019

a) \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)-3=-3\)

\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3-3=-3\)

\(\Leftrightarrow14x=0\)

\(\Leftrightarrow x=0\)

Vậy pt có nghiệm duy nhất x = 0.

b) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\left(x+2\right)-\left(x-5\right)\)

\(\Leftrightarrow6x^2+19x-7-6x^2-x+5=7\)

\(\Leftrightarrow18x-2=7\)

\(\Leftrightarrow18x=9\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy pt có nghiệm duy nhất \(x=\frac{1}{2}\)

c) \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)

\(\Leftrightarrow36x^2-24x+4+25x^2-20x+4-60x^2+33x-8=0\)

\(\Leftrightarrow x^2-11x=0\)

\(\Leftrightarrow x\left(x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=11\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{0;11\right\}\)

d) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

\(\Leftrightarrow x^2-6x+9-x^2-4x+32=1\)

\(\Leftrightarrow41-10x=1\)

\(\Leftrightarrow-10x=40\)

\(\Leftrightarrow x=-4\)

Vậy pt có nghiệm duy nhất x = -4.

e) \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)

\(\Leftrightarrow3\left(x^2+4x+4\right)+4x^2-4x+1-7x^2+36=36\)

\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2=0\)

\(\Leftrightarrow8x=-13\)

\(\Leftrightarrow x=-\frac{13}{8}\)

Vậy pt có nghiệm duy nhất \(x=-\frac{13}{8}\)

24 tháng 12 2020

a, \(\frac{x+1}{2x+6}+\frac{2x+3}{x^2+3x}=\frac{x+1}{2\left(x+3\right)}+\frac{3x+2}{x\left(x+3\right)}\)

\(=\frac{x^2+x}{2x\left(x+3\right)}+\frac{6x+4}{2x\left(x+3\right)}=\frac{x^2+7x+4}{2x\left(x+3\right)}\)

b, Sua de :  \(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}\)

\(=\frac{3x}{2x\left(x+3\right)}-\frac{x-6}{2x\left(x+3\right)}=\frac{2x+6}{2x\left(x+3\right)}=\frac{1}{x}\)

19 tháng 7 2017

Các bạn giải hộ mk 5 bài này nhanh lên nhé. Mình cảm ơn các bạn trước nhahihi

19 tháng 7 2017

Các bạn giúp mk vs ạ

28 tháng 7 2018

Bài 1 :

(3xy-1/2).(4x2y-6xy2+1) = 12x3y- 18x2y3 + 3xy - 2x2y + 3xy2 - 1/2 

28 tháng 7 2018

Bài 4:

\(4x^2+8x+7=\left(4x^2+8x+4\right)+3=\left(2x+2\right)^2+3\ge3>0 \)

5 tháng 9 2018

Bài 1 :

a ) \(A=3x^2-5x+2000\)

\(A=3\left(x^2-\dfrac{5}{3}x+\dfrac{2000}{3}\right)\)

\(A=3\left[\left(x^2-\dfrac{5}{3}x+\dfrac{25}{36}\right)+\dfrac{23975}{36}\right]\)

\(A=3\left[\left(x-\dfrac{5}{6}\right)^2+\dfrac{23975}{36}\right]\)

Vì : \(\left(x-\dfrac{5}{6}\right)^2\ge0\Rightarrow\left(x-\dfrac{5}{6}\right)^2+\dfrac{23975}{36}\ge\dfrac{23975}{35}\Rightarrow3\left[\left(x-\dfrac{5}{6}\right)^2+\dfrac{23975}{36}\right]\ge\dfrac{23975}{12}\)

Vậy GTNN của A là \(\dfrac{23975}{12}\) khi \(\left(x-\dfrac{5}{6}\right)^2=0\Rightarrow x=\dfrac{5}{6}\)

b ) \(B=-2x^2+6x+2018\)

\(B=-2\left(x^2-3x-1009\right)\)

\(B=-2\left[\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{4045}{4}\right]\)

\(B=-2\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{4045}{4}\right]\le\dfrac{4045}{2}\)

Vậy GTLN của B là \(\dfrac{4045}{2}\) khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{3}{2}\)

Chúc bạn học tốt !!

5 tháng 9 2018

2)

\(x^9-x^7+x^6-x^5-x^4+x^3-x^2+1\)

\(=x^7\left(x^2-1\right)+x^4\left(x^2-1\right)+x^3\left(x^2-1\right)-1\left(x^2-1\right)\)

\(=\left(x^7+x^4+x^3-1\right)\left(x-1\right)\left(x+1\right)\)

\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+3\right)+15\)

\(=\left(x^2-1\right)\left(x^2-9\right)+15\)

\(=\left(x^2-5+4\right)\left(x^2-5-4\right)+15\)

\(=\left(x^2-5\right)^2-16+15=\left(x^2-5\right)^2-1\)

\(=\left(x^2-5+1\right)\left(x^2-5-1\right)=\left(x^2-4\right)\left(x^2-6\right)=\left(x-2\right)\left(x+2\right)\left(x^2-6\right)\)

\(x^7+x^5+1\)

\(=x^7-x^6+x^5-x^3+x^2+x^6-x^5+x^4-x^2+x+x^5-x^4+x^3-x+1\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)