Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 3101 - 3
=> 2S = 2.(3101 - 3) = 2.3101 - 6
=> 2S + 3 = 2 . 3101 - 3
Vậy n = 102
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Ta có : A = 5 + 32 + 33 + ... + 32018
<=> A = 1 + 1 + 3 + 32 + 33 + ... + 32018
=> 3A = 3 + 3 + 32 + 33 + 34 + ... + 32019
Lấy 3A trừ A ta có :
3A - A = (3 + 3 + 32 + 33 + 34 + ... + 32018 + 32019 ) - (1 + 1 + 3 + 32 + 33 + ... + 32018)
2A = 32019 + 3 - 2
2A = 32019 + 1
2A - 1 = 32019
<=> 3n = 32019
=> n = 2019
Vậy n = 2019
Ta có : \(A=\frac{2n-1}{n+3}=\frac{2n+6-7}{n+3}=\frac{2\left(n+3\right)}{n+3}-\frac{7}{n+3}=2-\frac{7}{n+3}\)
Để \(A\in Z\) thì 7 chia hết cho n + 3
Suy ra n + 3 thuộc Ư(7) = {-7;-1;1;7}
Ta có bảng ;
n + 3 | -7 | -1 | 1 | 7 |
n | -10 | -4 | -2 | 4 |
\(A=\frac{n+1}{n-3}\)điều kiện: n-3 khác 0\(\Rightarrow\)n khác 3
để \(A=\frac{n+1}{n-3}\)là số nguyên\(\Rightarrow\)n+1\(⋮\)n-3
\(\Rightarrow\)3(n+1)\(⋮\)n-3
\(\Rightarrow\)3n+3\(⋮\)n-3 (1)
mà n-3\(⋮\)n-3
\(\Rightarrow\)3(n-3)\(⋮\)n-3
\(\Rightarrow\)3n-9\(⋮\)n-3 (2)
từ (1)và(2)\(\Rightarrow\)(3n+3)-(3n-9)\(⋮\)n-3
3n+3-3n+9\(⋮\)n-3
12\(⋮\)n-3
n-3\(\in\)Ư12={\(\pm1,\pm2,\pm3,\pm4,\pm6,\pm12\)}
bạn tự thử nhé
Vì n thuộc N* => n thuộc {1;2;3;4;...}
Ta xét các trường hợp sau :
+ nếu n=1
Khi đó : A=1!=1=12-là số chính phương ( thỏa mãn )
+ nếu n=2
Khi đó : A=1!+2!=1+1x2=3-không là số chính phương (loại)
+Nếu n=3
khi đó : A=1!+2!+3!=1+1x2+1x2x3=1+2+6=9=32-là số chính phương (thỏa mãn)
+Với n>hoặc=4
Ta có : A= 1!+2!+3!+4!=1+1x2+1x2x3+1x2x3x4=1+2+6+24=33 có chữ số tận cùng là 3
Mà 5!;6!;7!;...;n! có chữ số tận cùng là 0
=>A=1!+2!+3!+4!+...+n! có chữ số tận cùng là 3(với n>hoặc = 4)
Mà số chính phương không thể có chữ số tận cùng là 3
Nên A=1!+2!+3!+4!+...+n!không là số chính phương (với n> hoặc =4)
Vậy n thuộc { 1;3 } thì A=1!+2!+3!+...+n! là số chính phương
3A = 3 + 3^2 + 3^3 + .. + 3^100+ 3^101
A = 1 + 3 + 3^2 + .. + 3^100
3A - A = 3 + 3^2 + 3^3 + .. + 3^100 + 3^101 - 1 - 3 - 3^2 - ... - 3^100
= 3^101 - 1
2A = 3^101 - 1
2A + 3 = 3^101 - 1 + 3 = 3^ 101 + 2 khác 3^n
=> không có n thỏa mãn
Ta có: A=1+3+32+…+3100
=>A.3=3+32+33+…+3101
=>A.3-A=3+32+33+…+3101-1-3-32-…-3100
=>A.2=3101-1
=>A.2+1=3101=3n
=>3101=3n
=>n=101
Vậy n=101