Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 2^2 + 2^3 + ...+ 2^100
=> 2A = 2 + 2^3+2^4 + ...+ 2^101
=> 2A-A = 2^101 + 2 - 1
A = 2^101 + 1
\(A=1+2^2+2^3+...+2^{100}\)
\(2A=2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^3+...+2^{101}\right)-\left(1+2^2+...+2^{100}\right)\)
\(A=2+2^{101}-1-2^2\)
\(A=2^{101}-3\)
\(S=1+2^1+...+2^{100}\)
\(\Rightarrow2S=2+2^2+...+2^{101}\)
\(\Rightarrow2S-S=2+2^2+...+2^{101}-1-2^1-...-2^{100}\)
\(\Rightarrow S=2^{101}-1\)
1) Từ 1 đến 100 có tất cả 100 số số hạng
=> 1+2+3+....+99+100=\(\frac{\left(100+1\right)\cdot100}{2}=5050\)
=> A=5050
2) Từ 1 đến 99 có tất cả: (99-1) : 2 +1=50 số hạng
=> 1+3+5+7+....+97+99=\(\frac{\left(99+1\right)\cdot50}{2}=2500\)
=> B=250
3) làm tương tự
4) S=\(1+2+2^2+2^3+...+2^9\)
\(2S=2+2^2+2^3+2^4+....+2^{10}\)
\(2S-S=2^{10}-1\)
\(\Rightarrow S=2^{10}-1\)
5) làm tương tự
A=1+2+3+...+99+100
Số số hạng của dãyA là:
(100-1):1+1=100(số hạng)
Tổng của dãy A là :
(100+1).100:2=5050
B=1+3+5+...+97+99
Số số hạng của dãy B là:
(99-1):2+1=50 (số hạng)
Tổng của dãy B là:
(99+1).50:2=250
C=2+4+6+...+98+100
Số số hạng của dãy C là:
(100-2):2+1=50(số hạng)
Tổng của dãy C là:
(100+2).50:2=2550
S=1+2+22+23+...+29
2S= 2+22+23+...+29+210
2S-S=1-210
S=1-210
M=1+3+32+33+...+39
3M=3+32+33+...+39+310
3M-M=1-310
2M=1-310
M=(1-310):2
a Ta có
B= 1-2-3+4-5-6-7+8......+ 97 -98-99+100
= ( 1-2-3+4)+ (5-6-7+8)+ .....+ ( 97-98-99+100)
= 0 +0+... +0 (25 cs 0)
=0 x25=0
Ko ghi đề
\(2A=2+2^2+...+2^{101}\\ 2A-A=2^{101}-1\\ =>A=2^{101}-1\)
Mấy cái khác cg lm như v (b thì 3b)
Nhớ đúng mk nhá
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) Có A=\(1+3+3^2+3^3+....+3^{100}\)
\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)
Bài b/c/d : bn cứ lm tương tự.
\(A=1+2^2+2^3+...+2^{100}\)
\(2A=2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2+2^3+2^4+...+2^{101}\right)-\left(1+2^2+2^3+...+2^{100}\right)\)
\(A=\left(2+2^{101}\right)-\left(1+2^2\right)\)
B tự tính A nhé
\(2A=2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2+2^3+...+2^{101}\right)-\left(1+2^2+...+2^{100}\right)\)
\(A=\left(2+2^{101}\right)-\left(1+2^2\right)\)
\(A=2+2^{101}-5\)
\(A=2^{101}-3\)