K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

\(A=1+2^2+2^3+...+2^{100}\)

\(2A=2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2+2^3+2^4+...+2^{101}\right)-\left(1+2^2+2^3+...+2^{100}\right)\)

\(A=\left(2+2^{101}\right)-\left(1+2^2\right)\)

B tự tính A nhé 

7 tháng 8 2018

\(2A=2+2^3+2^4+...+2^{101}\)

\(2A-A=\left(2+2^3+...+2^{101}\right)-\left(1+2^2+...+2^{100}\right)\)

\(A=\left(2+2^{101}\right)-\left(1+2^2\right)\)

\(A=2+2^{101}-5\)

\(A=2^{101}-3\)

9 tháng 8 2018

A = 1 + 2^2 + 2^3 + ...+ 2^100

=> 2A = 2 + 2^3+2^4 + ...+ 2^101

=> 2A-A = 2^101 + 2 - 1

A = 2^101 + 1

9 tháng 8 2018

\(A=1+2^2+2^3+...+2^{100}\)

\(2A=2+2^3+...+2^{101}\)

\(2A-A=\left(2+2^3+...+2^{101}\right)-\left(1+2^2+...+2^{100}\right)\)

\(A=2+2^{101}-1-2^2\)

\(A=2^{101}-3\)

8 tháng 10 2017

\(S=1+2^1+...+2^{100}\)

\(\Rightarrow2S=2+2^2+...+2^{101}\)

\(\Rightarrow2S-S=2+2^2+...+2^{101}-1-2^1-...-2^{100}\)

\(\Rightarrow S=2^{101}-1\)

5 tháng 3 2020

1) Từ 1 đến 100 có tất cả 100 số số hạng

=> 1+2+3+....+99+100=\(\frac{\left(100+1\right)\cdot100}{2}=5050\)

=> A=5050

2) Từ 1 đến 99 có tất cả: (99-1) : 2 +1=50 số hạng

=> 1+3+5+7+....+97+99=\(\frac{\left(99+1\right)\cdot50}{2}=2500\)

=> B=250

3) làm tương tự

4) S=\(1+2+2^2+2^3+...+2^9\)

\(2S=2+2^2+2^3+2^4+....+2^{10}\)

\(2S-S=2^{10}-1\)

\(\Rightarrow S=2^{10}-1\)

5) làm tương tự

5 tháng 3 2020

A=1+2+3+...+99+100

Số số hạng của dãyA là:

(100-1):1+1=100(số hạng)

Tổng của dãy A là :

(100+1).100:2=5050

B=1+3+5+...+97+99

Số số hạng của dãy B là:

 (99-1):2+1=50 (số hạng)

Tổng của dãy B là:

  (99+1).50:2=250

C=2+4+6+...+98+100

Số số hạng của dãy C  là:

  (100-2):2+1=50(số hạng)

Tổng của dãy C là: 

  (100+2).50:2=2550

      S=1+2+22+23+...+29

    2S=    2+22+23+...+29+210

2S-S=1-210

      S=1-210

M=1+3+32+33+...+39

3M=3+32+33+...+39+310

3M-M=1-310

2M=1-310

M=(1-310):2

13 tháng 2 2020

a Ta có 

B= 1-2-3+4-5-6-7+8......+ 97 -98-99+100

  = ( 1-2-3+4)+ (5-6-7+8)+ .....+ ( 97-98-99+100)

=       0 +0+... +0 (25 cs 0)

=0 x25=0

13 tháng 2 2020

a)B=0 

28 tháng 8 2019

Ko ghi đề

\(2A=2+2^2+...+2^{101}\\ 2A-A=2^{101}-1\\ =>A=2^{101}-1\)

Mấy cái khác cg lm như v (b thì 3b)

Nhớ đúng mk nhá

26 tháng 5 2017

a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

26 tháng 5 2017

a) Có A=\(1+3+3^2+3^3+....+3^{100}\)

\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)

Bài b/c/d : bn cứ lm tương tự.