K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

a, phân tích vế trái ta được:

11+6\(\sqrt{2}\)=9+2.3.\(\sqrt{2}\)+2=(3+\(\sqrt{2}\))2\(\)=VP(dpcm)

b,phân tích vế trái ta được

\(\sqrt{11+6\sqrt{ }2}\)+\(\sqrt{11-6\sqrt{ }2}\)=|3+\(\sqrt{2}\)|+|3-\(\sqrt{2}\)|=6=VP(dpcm)

a,phân tích vế trái ta được

8-2\(\sqrt{7}\)=7-2\(\sqrt{7}\)+1=(\(\sqrt{7}\)-1)2

câu b sai đề nha

20 tháng 5 2019

Ta có a) \(11+6\sqrt{2}=9+2\times3\times\sqrt{2}+2=\left(3+\sqrt{2}\right)^2\)

b) \(\sqrt{11+6\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=3+\sqrt{2}+3-\sqrt{2}=6\)

29 tháng 9 2020

1) \(\left(\sqrt{6}-\sqrt{8}\right)\left(\sqrt{6}+\sqrt{8}\right)\)

\(=\left(\sqrt{6}\right)^2-\left(\sqrt{8}\right)^2\)

\(=6-8=-2\)

2) \(\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

\(=3^2-\left(\sqrt{5}\right)^2\)

\(=9-5=4\)

29 tháng 9 2020

3) \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)

\(=\sqrt{4-4\sqrt{3}+3}+\sqrt{4+4\sqrt{3}+3}\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+2+\sqrt{3}=4\)

4) Xét ta thấy: \(2\sqrt{3}=\sqrt{12}< \sqrt{16}=4\)

=> \(2\sqrt{3}-4< 0\) => vô lý không tm đk căn

19 tháng 6 2018

e , \(\sqrt{11^2-\left(6\sqrt{2}\right)^2}\)

27 tháng 10 2019

g, h. Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath

24 tháng 7 2020

a, Nghe đề sai sai là lạ

b, Ta có : \(B=\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right)\sqrt{2}+2\sqrt{5}\)

\(=\sqrt{4}-\sqrt{6+2\sqrt{5}}+2\sqrt{5}=2+2\sqrt{5}-\sqrt{5+2\sqrt{5}+1}\)

\(=2+2\sqrt{5}-\sqrt{5}-1=\sqrt{5}+1\)

c, Ta có : \(C=\left(\sqrt{14}-\sqrt{10}\right)\left(\sqrt{6}+\sqrt{35}\right)\)

\(=\sqrt{84}-\sqrt{60}+\sqrt{490}-\sqrt{350}=2\sqrt{21}-2\sqrt{15}+7\sqrt{10}-5\sqrt{14}\)

d, Ta có : \(D=\sqrt{11-4\sqrt{7}}-\sqrt{2}\sqrt{8+3\sqrt{7}}\)

\(=\sqrt{4-4\sqrt{7}+7}-\sqrt{9+6\sqrt{7}+7}\)

\(=\sqrt{7}-2-3-\sqrt{7}=-5\)

1: Chứng minh

a) Ta có: \(VT=11+6\sqrt{2}\)

\(=9+2\cdot3\cdot\sqrt{2}+2\)

\(=\left(3+\sqrt{2}\right)^2=VP\)(đpcm)

b) Ta có: \(VP=\left(\sqrt{7}-1\right)^2\)

\(=7-2\cdot\sqrt{7}\cdot1+1\)

\(=8-2\sqrt{7}=VT\)(đpcm)

c) Ta có: \(VT=\left(5-\sqrt{3}\right)^2\)

\(=25-2\cdot5\cdot\sqrt{3}+3\)

\(=28-10\sqrt{3}=VP\)(đpcm)

d) Ta có: \(VP=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)

\(=\sqrt{3+2\cdot\sqrt{3}\cdot1+1}-\sqrt{3-2\cdot\sqrt{3}\cdot1+1}\)

\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\left|\sqrt{3}+1\right|-\left|\sqrt{3}-1\right|\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)\)

\(=\sqrt{3}+1-\sqrt{3}+1\)

\(=2=VT\)(đpcm)

TL
28 tháng 7 2020

thêm dòng này nữa :33

⇔ 11 + \(6\sqrt{2}=11+6\sqrt{2}\left(đpcm\right)\)

3 tháng 7 2019

\(\left(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}+\frac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{1-\sqrt{2}}+\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(\frac{-\sqrt{7}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\frac{-\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\left(-\sqrt{7}-\sqrt{5}\right):\frac{1}{\sqrt{7}-\sqrt{5}}=\frac{\sqrt{5}-\sqrt{7}}{\sqrt{7}+\sqrt{5}}=\frac{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}+\sqrt{7}\right)}{\left(\sqrt{7}+\sqrt{5}\right)^2}=\frac{2}{12+2\sqrt{35}}\)

3 tháng 7 2019

\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}+\frac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+3\right)}-\frac{\sqrt{5}+1}{\sqrt{5}-1}=\frac{8-2\sqrt{15}}{2}+\frac{8+2\sqrt{15}}{2}-\frac{\left(\sqrt{5}+1\right)^2}{4}=8-\frac{6+2\sqrt{5}}{4}=\frac{26-2\sqrt{5}}{4}\)