K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

99 : 9 = 1089

Mình vừa k bạn rồi đấy, k lại mình đi

25 tháng 12 2016

bằng 1089

25 tháng 12 2016

993 : 9

= 729 : 9

= 81

k mình nhé

25 tháng 12 2016

bằng 107811

7 tháng 8 2017

A = 1 + 3 + 32 + 33 + ... + 399

3A = 3 + 32 + 33 + .. + 3100

3A -A = 3 + 32 + 3+ ... + 3100 - 1 - 3 - 32 - 399

2A = 3100 - 1

B - 2A = 3100 - ( 3100 - 1 ) = 1

7 tháng 11 2017

F = 1 + 3 + 32 + 33 + ..... + 399

F = 3+ 31 + 32 + 33 + ... + 399

F = ( 30 + 31 + 3+ 33 ) + ( 34 + 3+ 36 + 37 ) + .... + (  396 + 397 + 398 + 399 )

F = 30( 1 + 31 + 3+ 33 ) + 34 ( 1 + 31 + 32 + 34 ) + ..... + 396( 1 + 31 + 32 + 3)

F = 3* 40 + 34 * 40 +....... + 396 * 40

F = 40 ( 30 + 34 + ..... + 396 )

có 40 chí hết cho 40

=> F chia hết cho 40

k đúng cho mk cả 2 lần trả lời nha

7 tháng 11 2017

E = 109 + 108 + 107

E = 107( 102 + 10 + 1 )

E = 107 * 111

E = 106 * 10 * 111

E = 106 * 5 * 2 * 111

E = 106 * 5 * 222

có 222 chia hết cho 222 => 106 * 5 * 222 chia hết cho 222

=> 109 + 108 + 10chí hết cho 222

 25 . 86

=> 2. ( 2)6

=>25 . 218

=> 25+18

=> 223

P/s : tham khảo nha

21 tháng 10 2017

8388608

18 tháng 4 2017

A=(1.1-2.2)+(3.3-4.4)+...+(99.99-100.100)+101.101

A= (-3)+(-7)+...+(-199)+101.101

A=-[(199+3).50:2]+101.101

A= -5050+101.101

A=101.(-50)+101.101=(-50.101).101=510050

18 tháng 4 2017

mk ko bít làm

17 tháng 1 2016

a/ta có:s=(1-3+32-33)+.................+(396-397+398-399)

=-20+.....................+396.(-20.(1+...................396))

suy ra s chia het cho -20

b/ 3s=3-32+33-34+.................+399-3100

3s+s=(3-32+33-34+..........................+399-3100 +(1-3+32-33)+............+398-399)

4s=1-3100

s=(1-3100):4

​vì s chia hết cho -20 suy ra s chia hết cho 4 suy ra 1-3100 chia hêt cho 4 suy ra 3100:4 dư 1

nếu đúng thì tíc cho mình 2 cái nhé!

 

2 tháng 5 2020

\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)

\(=1+2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=3+2^2.\left(1+2+4\right)+...+2^{98}.\left(1+2+4\right)\)

\(=3+7.\left(2^2+2^5+...+2^{98}\right)\)chia 7 dư 3

3 tháng 5 2020

\(S=2^0+2^1+2^2+...+2^{99}+2^{100}\)

\(S=\left(2^0+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{98}+2^{99}+2^{100}\right)\)

\(S=\left(1+2+4\right)+2^3\left(1+2+4\right)+.....+2^{98}\left(1+2+4\right)\)

\(S=7+2^3\cdot7+....+2^{98}\cdot7\)

\(S=7\left(1+2^3+...+2^{98}\right)\)

=> S chia 7 dư 0 hay S chia hết cho 7