Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/10+2/10+3/10+4/10+5/10+6/10+7/10+8/10+9/10+55/10
=1+2+3+4+5+6+7+8+9+55 /10
=100/10
=10
ta có : \(\frac{10^9+2}{10^9-1}=\frac{10^9}{10^9-3}\)
\(\Leftrightarrow\left(10^9+2\right)\left(10^9-3\right)=\left(10^9-1\right)10^9\)
\(\Leftrightarrow10^{18}-10^9.3+2.10^9-6=10^{18}-10^9\)
\(\Rightarrow10^{18}-10^9.3+2.10^9-6=10^{18}-\left(10^9.3-2.10^9+6\right)\)
\(=10^{18}-\left(10^9+6\right)\)
vì \(-10^9>-\left(10^9+6\right)\Rightarrow10^{18}-10^9>10^{18}-\left(10^9+6\right)\)
\(\Rightarrow A>B\)
Ta có: A=\(\frac{10^9+2}{10^9-1}=\frac{10^9-1+3}{10^9-1}=1+\frac{3}{10^9-1}\)
B=\(\frac{10^9}{10^9-3}=\frac{10^9-3+3}{10^9-3}=1+\frac{3}{10^9-3}\)
Mà \(\frac{3}{10^9-1}< \frac{3}{10^9-3}\Rightarrow1+\frac{3}{10^9-1}< 1+\frac{3}{10^9-3}\Rightarrow A< B\)
Vậy A<B
Q=(2^9.3+2^9.5):2^12
Đặt A=2^9.3+2^9.5
A=2^9.(3+5)
A=2^9.8
Mặt khác:8=2^3
=>A=2^9.2^3
A=2^12
Theo đề bài ta có Q=(2^9.3+2^9.5):2^12
=>Q=2^12:2^12
Q=1
Nhìn dài dòng thế thôi chứ đơn giản lắm.Nếu thấy đúng thì cho mình nhé!
\(\dfrac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}=\dfrac{2^{10}.3^9\left(3-1\right)}{2^9.3^{10}}=\dfrac{2^{10}.3^9.2}{2^9.3^{10}}=\dfrac{2^9.2.3^9.2}{2^9.3.3^9}=\dfrac{4}{3}\)
\(\dfrac{2^{10}.3^{10}-2^{10}.3^9}{2^9.3^{10}}=\dfrac{2^{10}.3^9\left(3-1\right)}{2^9.3^{10}}=\dfrac{2^{10}.3^9.2}{2^9.3^{10}}=\dfrac{2^{10}.2.3^9.2}{2^9.3.3^9}=\dfrac{4}{3}\)
`Answer:`
Đặt \(N=\frac{9}{10}+\frac{9}{10^2}+\frac{9}{10^3}+...+\frac{9}{10^{10}}\)
\(\Rightarrow\frac{N}{9}=\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+...+\frac{1}{10^{10}}\)
Ta có \(\frac{N}{90}=\frac{1}{10^2}+\frac{1}{10^3}+\frac{1}{10^4}+...+\frac{1}{10^{11}}\)
\(\Rightarrow\frac{N}{9}-\frac{N}{90}=\left(\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+...+\frac{1}{10^{10}}\right)-\left(\frac{1}{10^2}+\frac{1}{10^3}+\frac{1}{10^4}+...+\frac{1}{10^{11}}\right)\)
\(\Rightarrow\frac{10N}{90}-\frac{N}{90}=\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+...+\frac{1}{10^{10}}-\frac{1}{10^2}-\frac{1}{10^3}-\frac{1}{10^4}-...-\frac{1}{10^{11}}\)
\(\Rightarrow\frac{9N}{90}=\frac{1}{10}-\frac{1}{10^{11}}\)
\(\Rightarrow\frac{N}{10}=\frac{10^{10}-1}{10^{11}}\)
\(\Rightarrow N=\frac{10^{10}-1}{10^{10}}\)