Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)
Đáp án :
\(x_0=^3\sqrt{38-17}\sqrt{5}+^3\sqrt{38+17}.\sqrt{5}\)
\(=x_0=38-17\sqrt{5}+38+17\sqrt{5}-3^3\sqrt{\left(38-17\sqrt{5}\right)\left(38+17\sqrt{5}\right).x_0}\)
\(=76-3^3\sqrt{-1}.x_0=76+3x_0\)
\(=x_0^3\)\(-3x_0-76=0\)
\(=\left(x_0-4\right)\left(x_0^2+4x_0+19\right)=0\)
\(=x_0=4\)
Thay x0 = 4 vào phương trình x3 - 3x2 - 2x - 8 = 0 ta có đẳng thức đúng là:
43 - 3.42 - 2.4 - 8 = 0
Vậy x0 là nghiệm của phương trình x3 - 3x2 - 2x - 8 = 0
Với \(x>0;x\ne4\)
\(\left(\frac{2}{\sqrt{x}-2}+\frac{3}{2\sqrt{x}+1}-\frac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\right):\frac{2\sqrt{x}+3}{5x-10\sqrt{x}}\)
\(=\left(\frac{2\left(2\sqrt{x}+1\right)+3\left(\sqrt{x}-2\right)-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right):\frac{2\sqrt{x}+3}{5\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\left(\frac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right):\frac{2\sqrt{x}+3}{5\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\left(\frac{2\sqrt{x}+3}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right).\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}=\frac{5\sqrt{x}}{2\sqrt{x}+1}\)
\(A=\left[\frac{2\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}+\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}-\frac{5\sqrt{x}-7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\right]\times\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\frac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}\times\frac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\frac{5\sqrt{x}\left(2\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}=\frac{5\sqrt{x}}{2\sqrt{x}+1}\)
a) \(B=\frac{1}{\frac{1}{4}\sqrt{\frac{1}{4}}+27}=\frac{1}{\frac{1}{4}\cdot\frac{1}{2}+27}=\frac{1}{\frac{1}{8}+27}=\frac{1}{\frac{217}{8}}=\frac{8}{217}\)
b) \(A=\frac{x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\frac{1}{2-\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}+3}\)
\(A=\frac{x-9+\sqrt{x}+3-\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(A=\frac{x-6+\sqrt{x}-x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(A=\frac{3\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{3}{\sqrt{x}+3}\)
c)) Với x \(\ge\)0 và x \(\ne\)4 (1)
Ta có: \(A>\frac{1}{2}\) <=> \(\frac{3}{\sqrt{x}+3}>\frac{1}{2}\)
<=> \(\sqrt{x}+3< 6\) <=> \(\sqrt{x}< 3\) <=> \(x< 9\) (2)
Từ (1) và (2) => \(0\le x< 9\)và x khác 4
d) Ta có : \(C=B:A=\frac{1}{x\sqrt{x}+27}:\frac{3}{\sqrt{x}+3}\)
\(C=\frac{1}{\left(\sqrt{x}+3\right)\left(x-3\sqrt{x}+9\right)}\cdot\frac{\sqrt{x}+3}{3}\)
\(C=\frac{1}{3\left(x-3\sqrt{x}+9\right)}=\frac{1}{3\left(x-3\sqrt{x}+\frac{9}{4}\right)+\frac{81}{4}}=\frac{1}{\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{81}{4}}\)
Do \(\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{81}{4}\ge\frac{81}{4}\) => \(C\le\frac{1}{\frac{81}{4}}=\frac{4}{81}\)
Dấu "=" xảy ra<=> \(\sqrt{x}-\frac{3}{4}=0\) <=> \(x=\frac{9}{16}\)
Vậy MaxC = 4/81 <=> x = 9/16
\(x^2+x+m-2=0\)
\(a,m=0\)
\(\Rightarrow x^2+x-2=0\)
\(\Rightarrow\hept{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy m=0 thì pt có 2 nghiệm x=1 và x=-2
a, Thay m = 0 vào phương trình trên ta được :
\(x^2+x-2=0\)
Ta có : \(\Delta=1+8=9\)
\(x_1=\frac{-1-3}{2}=-2;x_2=\frac{-1+3}{2}=1\)
Vậy m = 0 thì x = -2 ; x = 1
b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-1\\x_1x_2=\frac{c}{a}=m-2\end{cases}}\)
mà \(\left(x_1+x_2\right)^2=1\Leftrightarrow x_1^2+x_2^2=1-2x_1x_2=2m-3\)
hay bất phương trình trên tương đương :
\(2m-3-3\left(m-2\right)< 1\)
\(\Leftrightarrow2m-3-3m+6< 1\Leftrightarrow-m+3< 1\)
\(\Leftrightarrow-m< -2\Leftrightarrow m>2\)
9.
\(A>1\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}-1}>1\)
\(\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-1>0\)
\(\Leftrightarrow\dfrac{\sqrt{x}-2-\sqrt{x}+1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\dfrac{-1}{\sqrt{x}-1}>0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 1\)
Kết hợp với điều kiện giả thiết.
10.
\(P< 1\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}< 1\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-1< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\dfrac{2}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 1\)
Kết hợp với điều kiện giả thiết.