K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=231313131313131313131221333t6543311

12 tháng 7 2016

Ta có:

x=7=>x+1=8

A=x15-(x+1)14+(x+1)x13-(x+1)x12+...-(x+1)x2+(x+1)x-5=x15-x15-x14+x14+x13-x13-x12+...-x3-x2+x2+x-5=7-5=2

Vậy A=2

5 tháng 9 2018

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)

\(=2\)

29 tháng 6 2015

Họ đã gợi ý cho rồi thì bạn còn hỏi làm gì nữa

x=7=>x+1=8

A=x15-(x+1)14+(x+1)x13-(x+1)x12+...-(x+1)x2+(x+1)x-5=x15-x15-x14+x14+x13-x13-x12+...-x3-x2+x2+x-5=7-5=2

21 tháng 12 2016

8 day dung 100%

5 tháng 9 2018

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)

\(=2\)

1 tháng 5 2018

a) P(x)=8x6-4x2+5x5-12x+7x2-2x5

           =8x6+(-4x2+7x2)+(5x5-2x5)-12x

           =8x6+3x2+3x5-12x

b) P(x)=8x6+3x2+3x5-12x

           =8x6+3x5+3x2-12x

P(x)-Q(x)=(8x6+3x5+3x2-12x)-(2x5-6x2+8x-2x6)

               =8x6+3x5+3x2-12x-2x5+6x2-8x+2x6

               =(8x6+2x6)+(3x5-2x5)+(3x2+6x2)+(-12x-8x)

               =10x6+x5+9x2-20x

R(x)-Q(x)=4x6-8x2

R(x)        =(4x6-8x2)+Q(x)

R(x)               =(4x6-8x2)+(2x5-6x2+8x-2x6)

R(x)               =4x6-8x2+2x5-6x2+8x-2x6

R(x)               =(4x6-2x6)+(-8x2-6x2)+2x5+8x

R(x)                      =2x6-14x2+2x5+8x

17 tháng 8 2020

Bài 1:

a) Ta có: \(x=7\Rightarrow8=x+1\)

Thay vào ta được:

\(A=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)

\(A=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)

\(A=x-5\)

\(A=7-5=2\)

Vậy khi x = 7 thì A = 2

5 tháng 9 2018

\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)

\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)

\(=2\)