Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
x=7=>x+1=8
A=x15-(x+1)14+(x+1)x13-(x+1)x12+...-(x+1)x2+(x+1)x-5=x15-x15-x14+x14+x13-x13-x12+...-x3-x2+x2+x-5=7-5=2
Vậy A=2
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)
\(=2\)
Họ đã gợi ý cho rồi thì bạn còn hỏi làm gì nữa
x=7=>x+1=8
A=x15-(x+1)14+(x+1)x13-(x+1)x12+...-(x+1)x2+(x+1)x-5=x15-x15-x14+x14+x13-x13-x12+...-x3-x2+x2+x-5=7-5=2
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)
\(=2\)
a) P(x)=8x6-4x2+5x5-12x+7x2-2x5
=8x6+(-4x2+7x2)+(5x5-2x5)-12x
=8x6+3x2+3x5-12x
b) P(x)=8x6+3x2+3x5-12x
=8x6+3x5+3x2-12x
P(x)-Q(x)=(8x6+3x5+3x2-12x)-(2x5-6x2+8x-2x6)
=8x6+3x5+3x2-12x-2x5+6x2-8x+2x6
=(8x6+2x6)+(3x5-2x5)+(3x2+6x2)+(-12x-8x)
=10x6+x5+9x2-20x
R(x)-Q(x)=4x6-8x2
R(x) =(4x6-8x2)+Q(x)
R(x) =(4x6-8x2)+(2x5-6x2+8x-2x6)
R(x) =4x6-8x2+2x5-6x2+8x-2x6
R(x) =(4x6-2x6)+(-8x2-6x2)+2x5+8x
R(x) =2x6-14x2+2x5+8x
Bài 1:
a) Ta có: \(x=7\Rightarrow8=x+1\)
Thay vào ta được:
\(A=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(A=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-...-x^3-x^2+x^2+x-5\)
\(A=x-5\)
\(A=7-5=2\)
Vậy khi x = 7 thì A = 2
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...+8x-5\)
\(=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-x+2\)
\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-x+2\)
\(=2\)