Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{8^5\cdot\left(-5\right)^8+\left(-2\right)^5\cdot10^9}{2^{16}\cdot5^7+20^8}\)
\(=\dfrac{2^{15}\cdot5^8-2^5\cdot10^9}{2^{16}\cdot5^7+20^8}\)
\(=\dfrac{\left(2^{10}\cdot5^{18}-10^9\right)\cdot2^5}{2^{16}\cdot5^7+20^8}\)
\(=\dfrac{\left(2^2\cdot10^8-10^9\right)\cdot2^5}{2^{16}\cdot5^7+20^8}\)
\(=\dfrac{\left(2^2-10\right)\cdot10^8\cdot2^5}{2^{16}\cdot5^7+20^8}\)
\(=\dfrac{\left(4-10\right)\cdot10^8\cdot2^5}{2^{16}\cdot5^7+20^8}\)
\(=\dfrac{-6\cdot10^8\cdot2^5}{2^{16}\cdot5^7+20^8}\)
\(=\dfrac{-3\cdot2\cdot10^8\cdot2^5}{2^{16}\cdot5^7+20^8}\)
\(=\dfrac{-3\cdot2^6\cdot10^8}{2^{16}\cdot5^7+20^8}\)
\(=\dfrac{-3\cdot64\cdot10^8}{2^{16}\cdot5^7+20^8}\)
\(\dfrac{8^5.\left(-5\right)^8+\left(-2\right)^5.10^9}{2^{16}.5^7+20^8}=\dfrac{\left(2^3\right)^5.5^8+\left(-2\right).2^4.2^9.5^9}{2^{16}.5^7+\left(2^2\right)^8.5^8}\) \(=-\dfrac{2^{15}.5^8+2^{14}.5^9}{2^{16}.5^7+2^{16}.5^8}=-\dfrac{2^{14}.5^8.\left(2+5\right)}{2^{16}.5^7.\left(1+5\right)}=-\dfrac{5.7}{4.6}=-\dfrac{35}{24}\)
Bài 1:
a)
\(\dfrac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}\\ =\dfrac{\left(2^2\right)^2\cdot\left(5^2\right)^2+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^{2\cdot2}\cdot5^{2\cdot2}+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^4\cdot5^4+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^4\cdot5^4}{2^3\cdot5^2}+\dfrac{2^5\cdot5^3}{2^3\cdot5^2}\\ =2\cdot5^2+2^2\cdot5\\ =2\cdot25+4\cdot5\\ =50+20\\ =70\)
c)
\(\dfrac{\left(1-\dfrac{4}{9}-2\right)\cdot16}{\left(2-3\right)^{-2}}+12\\ =\dfrac{\left(\dfrac{9}{9}-\dfrac{4}{9}-\dfrac{18}{9}\right)\cdot16}{\left(-1\right)^{-2}}+12\\ =\dfrac{\dfrac{-13}{9}\cdot16}{\dfrac{1}{\left(-1\right)^2}}+12\\ =\dfrac{\dfrac{-208}{9}}{1}+12\\ =\dfrac{-208}{9}+12\\ =\dfrac{-208}{9}+\dfrac{108}{9}\\ =\dfrac{100}{9}\)
Bài 2:
a)
\(\left(x+2\right)^2=36\\ \Rightarrow\left[{}\begin{matrix}x+2=6\\x+2=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
b)
\(\left(1,78^{2x-2}-1,78^x\right):1,78^x=0\\ \Leftrightarrow\dfrac{1,78^{2x-2}}{1,78^x}-\dfrac{1,78^x}{1,78^x}=0\\ \Leftrightarrow\dfrac{1,78^{2x-2}}{1,78^x}-1=0\\ \Leftrightarrow \dfrac{1,78^{2x-2}}{1,78^x}=1\\ \Leftrightarrow1,78^{2x-2}=1,78^x\\ \Leftrightarrow2x-2=x\\ \Leftrightarrow2x-x=2\\ \Leftrightarrow x=2\)
d) \(5^{\left(x-2\right)\left(x+3\right)}=1\)
\(\Rightarrow5^{\left(x-2\right)\left(x+3\right)}=5^0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(x_1=-3;x_2=2\)
a: \(=\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)^2+\left(-1\right)\)
\(=\left(1-1\right)+\left(1-1\right)+...+\left(1-1\right)\)
=0
b: \(=\left(-1\right)^{100}+\left(-1\right)^{99}+...+\left(-1\right)^2+\left(-1\right)\)
\(=\left(1-1\right)+...+\left(1-1\right)\)
=0
c: \(=1^{100}-1^{99}+1^{98}-1^{97}+...+1^2-1\)
=0
f: \(=3\cdot\sqrt{9-5}+7=3\cdot2+7=13\)
1) Tìm số nguyên x, biết :
a) 3x = 94/ 273
3x = 1/3
3x = 3-1
=> x = -1
b) 3x = 98 / 273 . 812
3x = 37.38
3x = 315
=> x = 15
c) 2x - 3 / 410 = 83
2x - 3 = 83.410
2x - 3 = 226
=> x - 3 = 26
=> x = 29
d) 22x - 3 / 410 = 83 . 165
22x - 3 / 410 = 269
22x - 3 = 269 . 410
22x - 3 = 289
=> 2x - 3 = 89
2x = 91
x = 91/2
e) 35 / 3x = 310
3x = 35 : 310
3x = 3-5
=> x = -5
\(\frac{8^5\cdot\left(-5\right)^8+\left(-2\right)^5\cdot10^9}{2^{16}\cdot5^7+20^8}\)
\(=\frac{2^{15}\cdot5^8+2^{14}\cdot5^9\cdot\left(-1\right)}{2^{16}\cdot5^7+2^{16}\cdot5^8}\)
\(=\frac{2^{14}\cdot5^8\left(2-5\right)}{2^{16}\cdot5^7\left(1+5\right)}\)
\(=\frac{5\cdot\left(-3\right)}{2^2\cdot6}\)
\(=-\frac{5}{8}\)
\(=-\frac{5}{4}\)