Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = 1 + 3 + 32 + .... + 311
= (1+3+32 ) + ( 33 + 34 + 35) + ..... + (39 + 310 + 311)
= 13 + 33 . 13 + .... + 39 . 13
= 13 . (1+ 33 +....+ 39)
=> A chia hết cho 13
b) B = 165 + 215
= 220 +215
= 215 . 25 + 215
= 215 . ( 25 + 1)
= 215 .33
=> B chia hết cho 33
c) C= 5 + 52 + 53 + .....+ 58
= (5 + 52) + (53 + 54) +....+ ( 57 + 58)
= 30 + 52 (5 + 52) + ....+ 56 ( 5 + 52)
= 30 + 52 . 30 + .....+ 56 . 30
= 30. ( 1+ 52 +....+ 56 )
=> C chia hết cho 30
d) D= 45 + 99+ 180 chia hết cho 9
Do 45 chia hết cho 9
99 chia hết cho 9
180 chia hết cho 9
=> 45 + 99 + 180 chia hết cho 9
e) E = 1+ 3 + 32 + 33 + ......+ 3199
= (1+3+32) + (33 + 34 + 35) +......+ (3197 + 3198 + 3199)
= 13 + 33 (1+3+32) +.......+ 3197(1+3+32)
= 13 + 33 . 13 + ..... + 3197 .13
= 13. ( 1+ 33 +....+ 3197)
=> E chia hết cho 13
f)
Ta có: 1028 + 8 = 100...08 (27 chữ số 0)
Xét 008 chia hết cho 8 => 1028 + 8 chia hết cho 8 (1)
Mà 1+27.0+ 8 = 9 chia hết cho 9 => 1028 + 8 chia hết cho 9 (2)
Mà (8,9) =1 (3)
Từ (1); (2); (3) => 1028 + 8 chia hết cho (8.9)= 72
g)
ta có: G= 88 + 220 = (23)8 + 220 = 224 + 220 = 220 . 24 + 220 = 220 . (24 + 1) = 220 . 17
=> G chia hết cho 17
a) A = 1 + 3 + 3^2 + ... + 3^11
A = ( 1 + 3 + 3^2 ) + ... + ( 3^9 + 3^10 + 3^11 )
A = 1(1 + 3 + 3^2 ) + ... + 3^9 ( 1 + 3 + 3^2 )
A = 1 . 13 + ... + 3^9 . 13
A = 13 ( 1 + ... + 3^9 ) chia hết cho 13
còn mấy ý kia bạn chỉ cần tách nhóm rồi làm tương tự là ok
Good luck
Câu 1/ \(A=1+7+7^2+7^3+7^4+7^5\) Nhân hai vế với 7 được :
\(7A=7+7^2+7^3+7^4+7^5+7^6\) Do đó : \(6A=7^6-1\) (Đã lấy đẳng thức dưới trừ đẳng thức trên vế theo vế tương ứng)
Suy ra : \(A=\frac{\left(7^3\right)^2-1}{6}=\frac{\left(7^3-1\right)\left(7^3+1\right)}{6}=\)\(\frac{\left(7-1\right)\left(7^2+7.1+1^2\right)\left(7+1\right)\left(7^2-7.1+1^2\right)}{6}\)
(Đã khai triển các hằng đẳng thức đáng nhớ ) Như vậy : \(A=\left(7^2+8\right).8.\left(7^2+6\right)\) Là số chia hết cho 8
Câu 2/ Chứng tỏ : (2n + 5) chia hết cho (n + 1) .Câu này đề sai .Khi n = 1 đã sai rồi .
Câu 3 : Giải tương tự câu 1
+)A=2^1+2^2+2^3+2^4+...+2^2010
=>A=(2^1+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2009+2^2010)
=>A=6+2^2.(2+2^2)+2^4.(2+2^2)+...+2^2008(2+2^2)
=>A=6+2^2.6+2^4.6+...+2^2008.6
=>A=6.(1+2^2+2^4+...+2^2008)
=>A=3.2.(1+2^2+2^4+...+2^2008)
=>A chia hết cho 3
A=2+2^2+2^3+2^4+...+2^2010
A=(2+2^2+2^3)+(2^4+2^5+2^6)+(2^7+2^8+2^9)+...+(2^2008+2^2009+2^2010)
A=2.(1+1+2^2)+2^4(1+2+2^2)+2^7.(1+2+2^4)+...+2^2008.(1+2+2^2)
A=2.7+2^4.7+2^7.7+...+2^2008.7
A=7.(2+2^4+2^7+...+2^2008)
=> A chia hết cho 7
các phần khác làm tương tự
A = 21 + 22 + 23 + 24 + .... + 22009 + 22010
=> A = ( 21 + 22 ) + ( 23 + 24 ) + .... + ( 22009 + 22010 )
=> A = 21.( 1 + 2 ) + 23.( 1 + 2 ) + .... + 22009.( 1 + 2 )
=> A = 21.3 + 23.3 + .... + 22009.3
=> A = 3.( 21 + 23 + .... + 22009 )
Vì 3 ⋮ 3 => A ⋮ 3 ( đpcm )
A = 21 + 22 + 23 + 24 + 25 + 26 + .... + 22007 + 22008 + 22009
=> A = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + .... + ( 22007 + 22008 + 22009 )
=> A = 21.( 1 + 2 + 2.2 ) + 24.( 1 + 2 + 2.2 ) + .... + 22007.( 1 + 2 + 2.2 )
=> A = 21.7 + 24.7 + .... + 22007.7
=> A = 7.( 21 + 24 + .... + 22007 )
Vì 7 ⋮ 7 => A ⋮ 7 ( đpcm )
Các ý sau tương tự .
1,Chứng minh chia hết cho 3
A=2+2^2+2^3+2^4+2^5+2^6+2^7+...+2^2004
A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^2003+2^2004)
A=2(1+2)+2^3(1+2)+2^5(1+2)+...+2^2003(1+2)
A=2.3+2^3.3+2^5.3+..+2^2003.3
A=(2+2^3+2^5+...+2^2003).3 chia hết cho 3 (đpcm)
chứng minh chia hết cho 7
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^2002+2^2003+2^2004)
A=2(1+2+2^2)+2^4(1+2+2^2)+...+2^2002(1+2+2^2)
A=2.7+2^4.7+...+2^2002.7
A=(2+2^4+..+2^2002).7 chia hết cho 7 (Đpcm)<mik sẽ làm tiếp>
1) 2x . 4 = 128
2x = 128 : 4
2x = 32
2x = 25
=> x = 5
2) (2x + 1)3 = 125
(2x + 1)3 = 53
=> 2x + 1 = 5
2x = 5 - 1
2x = 4
x = 2
các bài khác bạn tự làm nha
A= 1+3+3^2+3^3+...+3^11
=(1+3)+(3^2+3^3)+...+(3^10+3^11)
=4+3^2(4)+...+3^10(4)
=4(1+3^2+...+3^10)
a) A= (1+3)+(3^2+3^3)+.....+ ( 3^10 + 3^11)
A= 1. ( 1+ 3) + 3^2. ( 1+ 3) +.....+ 3^10. (1+3)
A= 1.4+3^2.4+...+3^10.4
A= 4. ( 1+ 3^2+...+ 3^10) chia hết cho 4
Vậy A chia hết cho 4
b) B= (2^4)^5 + 2^15
B= 2^ 20+ 2^15
B= 2^15.2^5+2^15
B= 2^15. (2^5 +1)
B= 2^15.33 chia hết cho 33
Vậy B chia hết cho 33
c) C= 5+5^2+5^3+....+5^8 chia hết cho 5 (1)
C= 5+ 5^2 +5^3+.....+5^8
C= (5+5^2)+(5^3+5^4)+...+(5^7+5^8)
C= 5. (1+5) + 5^3. (1+5) +....+ 5^7.(1+5)
C= 5.6+5^3.6+...+5^7.6 chia hết cho 6
mà 5 và 6 là hai số nguyên tố cùng nhau
suy ra C chia hết cho 30
Vậy C chia hết cho 30
d) 5.9+11.9+9.20= 9. (5+11+20) chia hết cho 9
Vậy D chia hết cho 9
e) E= (1+3+ 3^2) + (3^3+3^4+3^5) +....+ (3^117+3^118+3^119)
E= 1.(1+3+3^2) + 3^3.(1+3+3^2) +....+ 3^117.(1+3+3^2)
E= 1.13+3^3.13+...+ 3^117.13
E= 13. ( 1+3^3+...+3^117) chia hết cho 13
Vậy E chia hết cho 13
f) Ta có: 10^28= 100.....000 ( có 28 chữ số 0)
thay 100...00 vào 10^28 ta được:
1000....00+8= 1000...008 chia hết cho 3 và 9 vì tổng các chữ số của 100...008 bằng 9
mà 3 và 9 là hai số nguyên tố cùng nhau
suy ra F chia hết cho 27
Vậy F chia hết cho 27
g) G= (2^3)^8 + 2^20
G= 2^24 + 2^20
G= 2^20 . 2^4 + 2^20
G= 2^20. (2^4+1)
G= 2^20. 17 chia hết cho 17
Vậy G chia hết cho 17
Nếu các bạn thầy hay thì (k) đúng cho mình nhé! thank you very much
A=1+3+32+33+...+320
A=(1+3)+(32+33)+(34+35)+...+(319+320)
A= 4+32(1+3)+34(1+3)+......+319(1+3)
A=4+32.4+34.4+....+319.4
A=4.(32+34+...+319) =>A chia hết cho 4
0+(
Nhân ra hả bạn???
\(8^3:4^2-5^2\) (Nhân chia trước cộng trừ sau)
=512:16-25
=32-25
7