K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
H2
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
G
2
11 tháng 8 2020
Chứng minh nếu p và 8p^2+1 là hai số nguyên tố thì 8p^2-1 là số nguyên tố - Lê Bảo An
Nếu không hiện ra thì vô tkhđ.
H2
1
5 tháng 3 2020
bạn hãy vào link sau nè:
https://olm.vn/hoi-dap/detail/17061171825.html
sẽ có lời giải đáp
NC
1
HT
6 tháng 3 2016
\(\frac{2^n}{8^k}=\frac{2^n}{2^{3k}}=\frac{2^{3k+1}}{2^{3k}}=\frac{2^{3k}.2}{2^{3k}}=2\)
BO
0
7 tháng 3 2016
Cái này là đa thức ak? Mình mới học đến đơn thức thôi!
NK
0
Đề là gì bạn ?? Tính chăng ??
Ta có : \(8p^2+1=8\left(3k+1\right)^2+1\)
\(=8\left(3k+1\right)\left(3k+1\right)+1\)
\(=8\left(9k^2+6k+1\right)+1\)
\(=72k^2+48k+8+1\)
\(=72k^2+48k+9\)
Ta có:\(8p^2-1=8.\left(3k+2\right)^2-1\)
\(=8.\left(3k+2\right).\left(3k+2\right)-1\)
\(=8.\left(9k^2+12k+4\right)-1\)
\(=72k^2+96k+32-1\)
\(=72k^2+96k+31\)