Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mọi người giúp mình với ạ,mai mình phải nộp rồi nhưng kô biết làm .Mong mn giúp đỡ!!!
Câu a thì mình chịu rồi @@ sorry nha
Còn câu b, bạn thấy rằng x2-3x+2-x2+x+1+2x-3=0 đúng không nào?
Nếu như bạn còn nhớ công thức a+b+c=0 <=> a3+b3+c3=3abc
Thì chắc chắn là bạn sẽ giải ra được bài này thôi. Đáp số là x=1 hoặc x=2 hoặc x=3/2 bạn nhé.
Chúc bạn giải được câu b này. Nếu như vẫn còn thắc mắc thì trả lời lại cho mình để mình gừi bài giải chi tiết nhé, do giờ mình đang bận @@
@hieu nguyen Em có nhân chéo hai vế và khai triển ra nhưng cũng không ra cái gì ạ.
Giải phương trình: x2+6x+1=(2x+1).\(\sqrt{x^2+2x+3}\)
Mọi người giải giúp mình với ạ!!!!Cảm ơn nhiều
ĐK: \(x^2+2x+3\ge0\)
\(x^2+6x+1=\left(2x+1\right).\sqrt{x^2+2x+3}\)
\(\Leftrightarrow x^2+2x+3+4x+2=\left(2x+1\right).\sqrt{x^2+2x+3}+4\)
Đặt \(a=\sqrt{x^2+2x+3}\); \(b=2x+1\), pt trở thành:
\(a^2+2b=ab+4\)
\(\Leftrightarrow a^2-4-ab+2b=0\)
\(\Leftrightarrow\left(a-2\right)\left(a+2\right)-b\left(a-2\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(a-b+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a-b=-2\end{matrix}\right.\)
.Với \(a=2\Leftrightarrow\sqrt{x^2+2x+3}=2\Leftrightarrow x^2+2x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}-1\left(N\right)\\x=-\sqrt{2}-1\left(N\right)\end{matrix}\right.\)
.Với \(a-b=-2\Leftrightarrow\sqrt{x^2+2x+3}-\left(2x+1\right)=-2\)
\(\Leftrightarrow\sqrt{x^2+2x+3}=-2+2x+1=2x-1\)
\(\Leftrightarrow x^2+2x+3=4x^2-4x+1\)
\(\Leftrightarrow3x^2-6x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3+\sqrt{15}}{3}\left(N\right)\\x=\frac{3-\sqrt{15}}{3}\left(L\right)\end{matrix}\right.\)
Vậy...
1. Tổng các hệ số của đa thức là: 12004.22005=22005
2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.
Nhận thấy x = 1 không là nghiệm của phương trình .
Nhân cả hai vế của pt cho (x−1)≠0 được :
(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)
Vậy pt trên vô nghiệm.
1. Tổng các hệ số của đa thức là:
12014 . 22015 = 22015
2 . Cần chứng minh.
\(x4 + x3 + x2 + x + 1 = 0\)
Vô nghiệm.
Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình.
Nhân cả hai vế của phương trình cho:
\(( x - 1 ) \) \(\ne\) \(0\) được :
\(( x-1). (x4+x3+x2+x+1)=0\)
\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)
Vô lí.
Vậy phương trình trên vô nghiệm.
a) \(x^2+3-\sqrt{2x^2-3x+2}=\frac{3}{2}\left(x+1\right)\)
\(\Leftrightarrow x^2.2+3.2-\sqrt{2x^2-3x+2}.3=\frac{3}{2}\left(x+1\right).2\)
\(\Leftrightarrow2x^2+6-\sqrt{2x^2-3x+2}=3\left(x+1\right)\)
\(\Leftrightarrow2x^2+6-2\sqrt{2x^2-3x+2}=3x+3\)
\(\Leftrightarrow-2\sqrt{2x^2-3x+2}+6=3x^2+3-2x^2\)
\(\Leftrightarrow-2\sqrt{2x^2-3x+2}=3x+3-2x^2-6\)
\(\Leftrightarrow-2\sqrt{2x^2-3x+2}=-2x^3+3x-3\)
\(\Leftrightarrow\left(-2\sqrt{2x^2-3x+2}\right)^2=\left(-2x^2+3x-3\right)^2\)
\(\Leftrightarrow8x^2-12x+8=4x^4-12x^3+21x^2-18x+9\)
\(\Leftrightarrow4x^2-12x^3+12x^2-6x+1=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy: nghiệm phương trình là \(\left\{1;\frac{1}{2}\right\}\)
b) \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
\(\Leftrightarrow\sqrt{x-1-4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)
Xét \(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|\)
\(=\left|\sqrt{x-1}-2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}-2+3-\sqrt{x-1}\right|=\left|1\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x-1}-2\right)\left(3-\sqrt{x-1}\right)\ge0\Leftrightarrow5\le x\le10\)