Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7^{\frac{1}{2}x-5}=343\)
\(7^{\frac{1}{2}x-5}=7^3\)
\(\frac{1}{2}x-5=3\)
\(\frac{1}{2}x=3+5\)
\(\frac{1}{2}x=8\)
\(x=8:\frac{1}{2}\)
\(x=16\)
\(7^{\frac{1}{2}x-5}=343\)
=>\(7^{\frac{1}{2}x-5}=7^3\)
=> \(\frac{1}{2}x-5=3\)
=> \(x=16\)
a) \(\left(\frac{1}{2}\right)^x=\frac{1}{32}\)
\(\left(\frac{1}{2}\right)^x=\left(\frac{1}{2}\right)^5\)
=> x = 5
b) \(\left(\frac{5}{7}\right)^x=\frac{125}{343}\)
\(\left(\frac{5}{7}\right)^x=\left(\frac{5}{7}\right)^3\)
=> x = 3
1) \(2^x=4^3\)
=> 2x = (22)3
=> 2x = 26
=> x = 6
2) \(\left(\frac{1}{7}\right)^x=\left(\frac{1}{343}\right)^3\)
=> \(\left(\frac{1}{7}\right)^x=\left[\left(\frac{1}{7}\right)^3\right]^3\)
=> \(\left(\frac{1}{7}\right)^x=\left(\frac{1}{7}\right)^9\)
=> x = 9
Bài làm:
1) \(2^x=4^3\)
\(\Leftrightarrow2^x=2^6\)
\(\Rightarrow x=6\)
2) \(\left(\frac{1}{7}\right)^x=\left(\frac{1}{343}\right)^3\)
\(\Leftrightarrow\left(\frac{1}{7}\right)^x=\left(\frac{1}{7}\right)^9\)
\(\Rightarrow x=9\)
a) \(\dfrac{49}{81}=\dfrac{7^x}{9^x}\)(sửa đề)
\(\Leftrightarrow\left(\dfrac{7}{9}\right)^2=\left(\dfrac{7}{9}\right)^x\)\(\Rightarrow x=2\)
b) \(\dfrac{-64}{343}=\left(-\dfrac{4^x}{7^x}\right)\)(sửa đề)
\(\Leftrightarrow\left(-\dfrac{4}{7}\right)^3=\left(-\dfrac{4}{7}\right)^x\) \(\Rightarrow x=3\)
c) \(\dfrac{9}{144}=\dfrac{3^x}{12^x}\)(sửa đề)
\(\Leftrightarrow\left(\dfrac{3}{12}\right)^2=\left(\dfrac{3}{12}\right)^x\Rightarrow x=2\)
d) \(-\dfrac{1}{32}=\left(-\dfrac{1^x}{2^x}\right)\)(sửa đề)
\(\Leftrightarrow\left(-\dfrac{1}{2}\right)^5=\left(-\dfrac{1}{2}\right)^x\Rightarrow x=5\)
Mong bạn xem lại đề bài.
a, x:(1/2)3=-1/2
x:1/8= -1/2
x= -1/2.1/8
x=-1/16
b,(3/4)5.x=(3/4)7
x=(3/4)7:(3/4)5
x= (3/4)2
c,(2/5)^8:x=(2/5)^6
x=.......
như cái trên nha lm giống thế
a: \(\Leftrightarrow7^x\cdot49+7^x\cdot\dfrac{2}{7}=345\)
\(\Leftrightarrow7^x=7\)
hay x=1
c: \(\left(\dfrac{1}{3}-\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{36}\)
\(\Leftrightarrow\left(-\dfrac{1}{6}\right)^{x-1}=\left(-\dfrac{1}{6}\right)^2\)
=>x-1=2
hay x=3
d: \(\dfrac{25}{5^x}=\dfrac{1}{125}\)
\(\Leftrightarrow5^x=5^2\cdot5^3=5^5\)
hay x=5